@@ -58,124 +58,6 @@ Google 在 2014 年开源了 Kubernetes 项目。
58
58
Kubernetes 建立在 [ Google 大规模运行生产工作负载十几年经验] ( https://research.google/pubs/pub43438 ) 的基础上,
59
59
结合了社区中最优秀的想法和实践。
60
60
61
- <!--
62
- ## Going back in time
63
-
64
- Let's take a look at why Kubernetes is so useful by going back in time.
65
- -->
66
- ## 时光回溯 {#going-back-in-time}
67
-
68
- 让我们回顾一下为何 Kubernetes 能够裨益四方。
69
-
70
- <!--
71
- 
72
- -->
73
- ![ 部署演进] ( /zh-cn/docs/images/Container_Evolution.svg )
74
-
75
- <!--
76
- **Traditional deployment era:**
77
- Early on, organizations ran applications on physical servers. There was no way to define
78
- resource boundaries for applications in a physical server, and this caused resource
79
- allocation issues. For example, if multiple applications run on a physical server, there
80
- can be instances where one application would take up most of the resources, and as a result,
81
- the other applications would underperform. A solution for this would be to run each application
82
- on a different physical server. But this did not scale as resources were underutilized, and it
83
- was expensive for organizations to maintain many physical servers.
84
- -->
85
- ** 传统部署时代:**
86
-
87
- 早期,各个组织是在物理服务器上运行应用程序。
88
- 由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
89
- 例如,如果在同一台物理服务器上运行多个应用程序,
90
- 则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
91
- 一种解决方案是将每个应用程序都运行在不同的物理服务器上,
92
- 但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
93
- 而且维护许多物理服务器的成本很高。
94
-
95
- <!--
96
- **Virtualized deployment era:** As a solution, virtualization was introduced. It allows you
97
- to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
98
- allows applications to be isolated between VMs and provides a level of security as the
99
- information of one application cannot be freely accessed by another application.
100
- -->
101
- ** 虚拟化部署时代:**
102
-
103
- 因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
104
- 虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
105
- 因为一个应用程序的信息不能被另一应用程序随意访问。
106
-
107
- <!--
108
- Virtualization allows better utilization of resources in a physical server and allows
109
- better scalability because an application can be added or updated easily, reduces
110
- hardware costs, and much more. With virtualization you can present a set of physical
111
- resources as a cluster of disposable virtual machines.
112
-
113
- Each VM is a full machine running all the components, including its own operating
114
- system, on top of the virtualized hardware.
115
- -->
116
- 虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
117
- 而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
118
- 通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
119
-
120
- 每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
121
-
122
- <!--
123
- **Container deployment era:** Containers are similar to VMs, but they have relaxed
124
- isolation properties to share the Operating System (OS) among the applications.
125
- Therefore, containers are considered lightweight. Similar to a VM, a container
126
- has its own filesystem, share of CPU, memory, process space, and more. As they
127
- are decoupled from the underlying infrastructure, they are portable across clouds
128
- and OS distributions.
129
- -->
130
- ** 容器部署时代:**
131
-
132
- 容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
133
- 因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
134
- 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
135
-
136
- <!--
137
- Containers have become popular because they provide extra benefits, such as:
138
- -->
139
- 容器因具有许多优势而变得流行起来,例如:
140
-
141
- <!--
142
- * Agile application creation and deployment: increased ease and efficiency of
143
- container image creation compared to VM image use.
144
- * Continuous development, integration, and deployment: provides for reliable
145
- and frequent container image build and deployment with quick and efficient
146
- rollbacks (due to image immutability).
147
- * Dev and Ops separation of concerns: create application container images at
148
- build/release time rather than deployment time, thereby decoupling
149
- applications from infrastructure.
150
- * Observability: not only surfaces OS-level information and metrics, but also
151
- application health and other signals.
152
- * Environmental consistency across development, testing, and production: runs
153
- the same on a laptop as it does in the cloud.
154
- * Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
155
- on major public clouds, and anywhere else.
156
- * Application-centric management: raises the level of abstraction from running an
157
- OS on virtual hardware to running an application on an OS using logical resources.
158
- * Loosely coupled, distributed, elastic, liberated micro-services: applications are
159
- broken into smaller, independent pieces and can be deployed and managed dynamically –
160
- not a monolithic stack running on one big single-purpose machine.
161
- * Resource isolation: predictable application performance.
162
- * Resource utilization: high efficiency and density.
163
- -->
164
- * 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
165
- * 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
166
- 提供可靠且频繁的容器镜像构建和部署。
167
- * 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
168
- 从而将应用程序与基础架构分离。
169
- * 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
170
- * 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
171
- * 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
172
- Google Kubernetes Engine 和其他任何地方运行。
173
- * 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
174
- * 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
175
- 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
176
- * 资源隔离:可预测的应用程序性能。
177
- * 资源利用:高效率和高密度。
178
-
179
61
<!--
180
62
## Why you need Kubernetes and what it can do {#why-you-need-kubernetes-and-what-can-it-do}
181
63
-->
@@ -368,6 +250,131 @@ Kubernetes:
368
250
你不需要在乎如何从 A 移动到 C,也不需要集中控制,这使得系统更易于使用且功能更强大、
369
251
系统更健壮,更为弹性和可扩展。
370
252
253
+ <!--
254
+ ## Historical context for Kubernetes {#going-back-in-time}
255
+
256
+ Let's take a look at why Kubernetes is so useful by going back in time.
257
+ -->
258
+ ## Kubernetes 的历史背景 {#going-back-in-time}
259
+
260
+ 让我们回顾一下为何 Kubernetes 能够裨益四方。
261
+
262
+ <!--
263
+ 
264
+ -->
265
+ ![ 部署演进] ( /zh-cn/docs/images/Container_Evolution.svg )
266
+
267
+ <!--
268
+ **Traditional deployment era:**
269
+
270
+ Early on, organizations ran applications on physical servers. There was no way to define
271
+ resource boundaries for applications in a physical server, and this caused resource
272
+ allocation issues. For example, if multiple applications run on a physical server, there
273
+ can be instances where one application would take up most of the resources, and as a result,
274
+ the other applications would underperform. A solution for this would be to run each application
275
+ on a different physical server. But this did not scale as resources were underutilized, and it
276
+ was expensive for organizations to maintain many physical servers.
277
+ -->
278
+ ** 传统部署时代:**
279
+
280
+ 早期,各个组织是在物理服务器上运行应用程序。
281
+ 由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
282
+ 例如,如果在同一台物理服务器上运行多个应用程序,
283
+ 则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
284
+ 一种解决方案是将每个应用程序都运行在不同的物理服务器上,
285
+ 但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
286
+ 而且维护许多物理服务器的成本很高。
287
+
288
+ <!--
289
+ **Virtualized deployment era:**
290
+
291
+ As a solution, virtualization was introduced. It allows you
292
+ to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
293
+ allows applications to be isolated between VMs and provides a level of security as the
294
+ information of one application cannot be freely accessed by another application.
295
+ -->
296
+ ** 虚拟化部署时代:**
297
+
298
+ 因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
299
+ 虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
300
+ 因为一个应用程序的信息不能被另一应用程序随意访问。
301
+
302
+ <!--
303
+ Virtualization allows better utilization of resources in a physical server and allows
304
+ better scalability because an application can be added or updated easily, reduces
305
+ hardware costs, and much more. With virtualization you can present a set of physical
306
+ resources as a cluster of disposable virtual machines.
307
+
308
+ Each VM is a full machine running all the components, including its own operating
309
+ system, on top of the virtualized hardware.
310
+ -->
311
+ 虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
312
+ 而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
313
+ 通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
314
+
315
+ 每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
316
+
317
+ <!--
318
+ **Container deployment era:**
319
+
320
+ Containers are similar to VMs, but they have relaxed
321
+ isolation properties to share the Operating System (OS) among the applications.
322
+ Therefore, containers are considered lightweight. Similar to a VM, a container
323
+ has its own filesystem, share of CPU, memory, process space, and more. As they
324
+ are decoupled from the underlying infrastructure, they are portable across clouds
325
+ and OS distributions.
326
+ -->
327
+ ** 容器部署时代:**
328
+
329
+ 容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
330
+ 因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
331
+ 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
332
+
333
+ <!--
334
+ Containers have become popular because they provide extra benefits, such as:
335
+ -->
336
+ 容器因具有许多优势而变得流行起来,例如:
337
+
338
+ <!--
339
+ * Agile application creation and deployment: increased ease and efficiency of
340
+ container image creation compared to VM image use.
341
+ * Continuous development, integration, and deployment: provides for reliable
342
+ and frequent container image build and deployment with quick and efficient
343
+ rollbacks (due to image immutability).
344
+ * Dev and Ops separation of concerns: create application container images at
345
+ build/release time rather than deployment time, thereby decoupling
346
+ applications from infrastructure.
347
+ * Observability: not only surfaces OS-level information and metrics, but also
348
+ application health and other signals.
349
+ -->
350
+ * 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
351
+ * 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
352
+ 提供可靠且频繁的容器镜像构建和部署。
353
+ * 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
354
+ 从而将应用程序与基础架构分离。
355
+ * 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
356
+ <!--
357
+ * Environmental consistency across development, testing, and production: runs
358
+ the same on a laptop as it does in the cloud.
359
+ * Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
360
+ on major public clouds, and anywhere else.
361
+ * Application-centric management: raises the level of abstraction from running an
362
+ OS on virtual hardware to running an application on an OS using logical resources.
363
+ * Loosely coupled, distributed, elastic, liberated micro-services: applications are
364
+ broken into smaller, independent pieces and can be deployed and managed dynamically –
365
+ not a monolithic stack running on one big single-purpose machine.
366
+ * Resource isolation: predictable application performance.
367
+ * Resource utilization: high efficiency and density.
368
+ -->
369
+ * 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
370
+ * 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
371
+ Google Kubernetes Engine 和其他任何地方运行。
372
+ * 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
373
+ * 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
374
+ 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
375
+ * 资源隔离:可预测的应用程序性能。
376
+ * 资源利用:高效率和高密度。
377
+
371
378
## {{% heading "whatsnext" %}}
372
379
373
380
<!--
0 commit comments