Skip to content

Commit 77fbce0

Browse files
authored
Merge pull request #47693 from windsonsea/overvin
[zh] Sync concepts/overview/_index.md
2 parents 80e1215 + a2d5a6d commit 77fbce0

File tree

1 file changed

+125
-118
lines changed
  • content/zh-cn/docs/concepts/overview

1 file changed

+125
-118
lines changed

content/zh-cn/docs/concepts/overview/_index.md

Lines changed: 125 additions & 118 deletions
Original file line numberDiff line numberDiff line change
@@ -58,124 +58,6 @@ Google 在 2014 年开源了 Kubernetes 项目。
5858
Kubernetes 建立在 [Google 大规模运行生产工作负载十几年经验](https://research.google/pubs/pub43438)的基础上,
5959
结合了社区中最优秀的想法和实践。
6060

61-
<!--
62-
## Going back in time
63-
64-
Let's take a look at why Kubernetes is so useful by going back in time.
65-
-->
66-
## 时光回溯 {#going-back-in-time}
67-
68-
让我们回顾一下为何 Kubernetes 能够裨益四方。
69-
70-
<!--
71-
![Deployment evolution](/images/docs/Container_Evolution.svg)
72-
-->
73-
![部署演进](/zh-cn/docs/images/Container_Evolution.svg)
74-
75-
<!--
76-
**Traditional deployment era:**
77-
Early on, organizations ran applications on physical servers. There was no way to define
78-
resource boundaries for applications in a physical server, and this caused resource
79-
allocation issues. For example, if multiple applications run on a physical server, there
80-
can be instances where one application would take up most of the resources, and as a result,
81-
the other applications would underperform. A solution for this would be to run each application
82-
on a different physical server. But this did not scale as resources were underutilized, and it
83-
was expensive for organizations to maintain many physical servers.
84-
-->
85-
**传统部署时代:**
86-
87-
早期,各个组织是在物理服务器上运行应用程序。
88-
由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
89-
例如,如果在同一台物理服务器上运行多个应用程序,
90-
则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
91-
一种解决方案是将每个应用程序都运行在不同的物理服务器上,
92-
但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
93-
而且维护许多物理服务器的成本很高。
94-
95-
<!--
96-
**Virtualized deployment era:** As a solution, virtualization was introduced. It allows you
97-
to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
98-
allows applications to be isolated between VMs and provides a level of security as the
99-
information of one application cannot be freely accessed by another application.
100-
-->
101-
**虚拟化部署时代:**
102-
103-
因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
104-
虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
105-
因为一个应用程序的信息不能被另一应用程序随意访问。
106-
107-
<!--
108-
Virtualization allows better utilization of resources in a physical server and allows
109-
better scalability because an application can be added or updated easily, reduces
110-
hardware costs, and much more. With virtualization you can present a set of physical
111-
resources as a cluster of disposable virtual machines.
112-
113-
Each VM is a full machine running all the components, including its own operating
114-
system, on top of the virtualized hardware.
115-
-->
116-
虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
117-
而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
118-
通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
119-
120-
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
121-
122-
<!--
123-
**Container deployment era:** Containers are similar to VMs, but they have relaxed
124-
isolation properties to share the Operating System (OS) among the applications.
125-
Therefore, containers are considered lightweight. Similar to a VM, a container
126-
has its own filesystem, share of CPU, memory, process space, and more. As they
127-
are decoupled from the underlying infrastructure, they are portable across clouds
128-
and OS distributions.
129-
-->
130-
**容器部署时代:**
131-
132-
容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
133-
因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
134-
由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
135-
136-
<!--
137-
Containers have become popular because they provide extra benefits, such as:
138-
-->
139-
容器因具有许多优势而变得流行起来,例如:
140-
141-
<!--
142-
* Agile application creation and deployment: increased ease and efficiency of
143-
container image creation compared to VM image use.
144-
* Continuous development, integration, and deployment: provides for reliable
145-
and frequent container image build and deployment with quick and efficient
146-
rollbacks (due to image immutability).
147-
* Dev and Ops separation of concerns: create application container images at
148-
build/release time rather than deployment time, thereby decoupling
149-
applications from infrastructure.
150-
* Observability: not only surfaces OS-level information and metrics, but also
151-
application health and other signals.
152-
* Environmental consistency across development, testing, and production: runs
153-
the same on a laptop as it does in the cloud.
154-
* Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
155-
on major public clouds, and anywhere else.
156-
* Application-centric management: raises the level of abstraction from running an
157-
OS on virtual hardware to running an application on an OS using logical resources.
158-
* Loosely coupled, distributed, elastic, liberated micro-services: applications are
159-
broken into smaller, independent pieces and can be deployed and managed dynamically –
160-
not a monolithic stack running on one big single-purpose machine.
161-
* Resource isolation: predictable application performance.
162-
* Resource utilization: high efficiency and density.
163-
-->
164-
* 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
165-
* 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
166-
提供可靠且频繁的容器镜像构建和部署。
167-
* 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
168-
从而将应用程序与基础架构分离。
169-
* 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
170-
* 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
171-
* 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
172-
Google Kubernetes Engine 和其他任何地方运行。
173-
* 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
174-
* 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
175-
并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
176-
* 资源隔离:可预测的应用程序性能。
177-
* 资源利用:高效率和高密度。
178-
17961
<!--
18062
## Why you need Kubernetes and what it can do {#why-you-need-kubernetes-and-what-can-it-do}
18163
-->
@@ -368,6 +250,131 @@ Kubernetes:
368250
你不需要在乎如何从 A 移动到 C,也不需要集中控制,这使得系统更易于使用且功能更强大、
369251
系统更健壮,更为弹性和可扩展。
370252

253+
<!--
254+
## Historical context for Kubernetes {#going-back-in-time}
255+
256+
Let's take a look at why Kubernetes is so useful by going back in time.
257+
-->
258+
## Kubernetes 的历史背景 {#going-back-in-time}
259+
260+
让我们回顾一下为何 Kubernetes 能够裨益四方。
261+
262+
<!--
263+
![Deployment evolution](/images/docs/Container_Evolution.svg)
264+
-->
265+
![部署演进](/zh-cn/docs/images/Container_Evolution.svg)
266+
267+
<!--
268+
**Traditional deployment era:**
269+
270+
Early on, organizations ran applications on physical servers. There was no way to define
271+
resource boundaries for applications in a physical server, and this caused resource
272+
allocation issues. For example, if multiple applications run on a physical server, there
273+
can be instances where one application would take up most of the resources, and as a result,
274+
the other applications would underperform. A solution for this would be to run each application
275+
on a different physical server. But this did not scale as resources were underutilized, and it
276+
was expensive for organizations to maintain many physical servers.
277+
-->
278+
**传统部署时代:**
279+
280+
早期,各个组织是在物理服务器上运行应用程序。
281+
由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
282+
例如,如果在同一台物理服务器上运行多个应用程序,
283+
则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
284+
一种解决方案是将每个应用程序都运行在不同的物理服务器上,
285+
但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
286+
而且维护许多物理服务器的成本很高。
287+
288+
<!--
289+
**Virtualized deployment era:**
290+
291+
As a solution, virtualization was introduced. It allows you
292+
to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
293+
allows applications to be isolated between VMs and provides a level of security as the
294+
information of one application cannot be freely accessed by another application.
295+
-->
296+
**虚拟化部署时代:**
297+
298+
因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
299+
虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
300+
因为一个应用程序的信息不能被另一应用程序随意访问。
301+
302+
<!--
303+
Virtualization allows better utilization of resources in a physical server and allows
304+
better scalability because an application can be added or updated easily, reduces
305+
hardware costs, and much more. With virtualization you can present a set of physical
306+
resources as a cluster of disposable virtual machines.
307+
308+
Each VM is a full machine running all the components, including its own operating
309+
system, on top of the virtualized hardware.
310+
-->
311+
虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
312+
而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
313+
通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
314+
315+
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
316+
317+
<!--
318+
**Container deployment era:**
319+
320+
Containers are similar to VMs, but they have relaxed
321+
isolation properties to share the Operating System (OS) among the applications.
322+
Therefore, containers are considered lightweight. Similar to a VM, a container
323+
has its own filesystem, share of CPU, memory, process space, and more. As they
324+
are decoupled from the underlying infrastructure, they are portable across clouds
325+
and OS distributions.
326+
-->
327+
**容器部署时代:**
328+
329+
容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
330+
因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
331+
由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
332+
333+
<!--
334+
Containers have become popular because they provide extra benefits, such as:
335+
-->
336+
容器因具有许多优势而变得流行起来,例如:
337+
338+
<!--
339+
* Agile application creation and deployment: increased ease and efficiency of
340+
container image creation compared to VM image use.
341+
* Continuous development, integration, and deployment: provides for reliable
342+
and frequent container image build and deployment with quick and efficient
343+
rollbacks (due to image immutability).
344+
* Dev and Ops separation of concerns: create application container images at
345+
build/release time rather than deployment time, thereby decoupling
346+
applications from infrastructure.
347+
* Observability: not only surfaces OS-level information and metrics, but also
348+
application health and other signals.
349+
-->
350+
* 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
351+
* 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
352+
提供可靠且频繁的容器镜像构建和部署。
353+
* 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
354+
从而将应用程序与基础架构分离。
355+
* 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
356+
<!--
357+
* Environmental consistency across development, testing, and production: runs
358+
the same on a laptop as it does in the cloud.
359+
* Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
360+
on major public clouds, and anywhere else.
361+
* Application-centric management: raises the level of abstraction from running an
362+
OS on virtual hardware to running an application on an OS using logical resources.
363+
* Loosely coupled, distributed, elastic, liberated micro-services: applications are
364+
broken into smaller, independent pieces and can be deployed and managed dynamically –
365+
not a monolithic stack running on one big single-purpose machine.
366+
* Resource isolation: predictable application performance.
367+
* Resource utilization: high efficiency and density.
368+
-->
369+
* 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
370+
* 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
371+
Google Kubernetes Engine 和其他任何地方运行。
372+
* 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
373+
* 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
374+
并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
375+
* 资源隔离:可预测的应用程序性能。
376+
* 资源利用:高效率和高密度。
377+
371378
## {{% heading "whatsnext" %}}
372379

373380
<!--

0 commit comments

Comments
 (0)