You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -67,15 +67,15 @@ Thanks to the "programmable" characteristic of Open vSwitch, Antrea is able to i
67
67
68
68
### AOS from Apstra
69
69
70
-
[AOS](http://www.apstra.com/products/aos/) is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform. AOS leverages a highly scalable distributed design to eliminate network outages while minimizing costs.
70
+
[AOS](https://www.apstra.com/products/aos/) is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform. AOS leverages a highly scalable distributed design to eliminate network outages while minimizing costs.
71
71
72
72
The AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems. These Layer-3 hosts can be Linux servers (Debian, Ubuntu, CentOS) that create BGP neighbor relationships directly with the top of rack switches (TORs). AOS automates the routing adjacencies and then provides fine grained control over the route health injections (RHI) that are common in a Kubernetes deployment.
73
73
74
74
AOS has a rich set of REST API endpoints that enable Kubernetes to quickly change the network policy based on application requirements. Further enhancements will integrate the AOS Graph model used for the network design with the workload provisioning, enabling an end to end management system for both private and public clouds.
75
75
76
76
AOS supports the use of common vendor equipment from manufacturers including Cisco, Arista, Dell, Mellanox, HPE, and a large number of white-box systems and open network operating systems like Microsoft SONiC, Dell OPX, and Cumulus Linux.
77
77
78
-
Details on how the AOS system works can be accessed here: http://www.apstra.com/products/how-it-works/
78
+
Details on how the AOS system works can be accessed here: https://www.apstra.com/products/how-it-works/
79
79
80
80
### AWS VPC CNI for Kubernetes
81
81
@@ -97,7 +97,7 @@ Azure CNI is available natively in the [Azure Kubernetes Service (AKS)] (https:/
97
97
98
98
With the help of the Big Cloud Fabric's virtual pod multi-tenant architecture, container orchestration systems such as Kubernetes, RedHat OpenShift, Mesosphere DC/OS & Docker Swarm will be natively integrated alongside with VM orchestration systems such as VMware, OpenStack & Nutanix. Customers will be able to securely inter-connect any number of these clusters and enable inter-tenant communication between them if needed.
99
99
100
-
BCF was recognized by Gartner as a visionary in the latest [Magic Quadrant](http://go.bigswitch.com/17GatedDocuments-MagicQuadrantforDataCenterNetworking_Reg.html). One of the BCF Kubernetes on-premises deployments (which includes Kubernetes, DC/OS & VMware running on multiple DCs across different geographic regions) is also referenced [here](https://portworx.com/architects-corner-kubernetes-satya-komala-nio/).
100
+
BCF was recognized by Gartner as a visionary in the latest [Magic Quadrant](https://go.bigswitch.com/17GatedDocuments-MagicQuadrantforDataCenterNetworking_Reg.html). One of the BCF Kubernetes on-premises deployments (which includes Kubernetes, DC/OS & VMware running on multiple DCs across different geographic regions) is also referenced [here](https://portworx.com/architects-corner-kubernetes-satya-komala-nio/).
101
101
102
102
### Cilium
103
103
@@ -109,7 +109,7 @@ addressing, and it can be used in combination with other CNI plugins.
109
109
110
110
### CNI-Genie from Huawei
111
111
112
-
[CNI-Genie](https://github.com/Huawei-PaaS/CNI-Genie) is a CNI plugin that enables Kubernetes to [simultaneously have access to different implementations](https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-cni-plugins/README.md#what-cni-genie-feature-1-multiple-cni-plugins-enables) of the [Kubernetes network model](https://github.com/kubernetes/website/blob/master/content/en/docs/concepts/cluster-administration/networking.md#the-kubernetes-network-model) in runtime. This includes any implementation that runs as a [CNI plugin](https://github.com/containernetworking/cni#3rd-party-plugins), such as [Flannel](https://github.com/coreos/flannel#flannel), [Calico](http://docs.projectcalico.org/), [Romana](http://romana.io), [Weave-net](https://www.weave.works/products/weave-net/).
112
+
[CNI-Genie](https://github.com/Huawei-PaaS/CNI-Genie) is a CNI plugin that enables Kubernetes to [simultaneously have access to different implementations](https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-cni-plugins/README.md#what-cni-genie-feature-1-multiple-cni-plugins-enables) of the [Kubernetes network model](/ja/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model) in runtime. This includes any implementation that runs as a [CNI plugin](https://github.com/containernetworking/cni#3rd-party-plugins), such as [Flannel](https://github.com/coreos/flannel#flannel), [Calico](http://docs.projectcalico.org/), [Romana](http://romana.io), [Weave-net](https://www.weave.works/products/weave-net/).
113
113
114
114
CNI-Genie also supports [assigning multiple IP addresses to a pod](https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-ips/README.md#feature-2-extension-cni-genie-multiple-ip-addresses-per-pod), each from a different CNI plugin.
115
115
@@ -131,11 +131,11 @@ network complexity required to deploy Kubernetes at scale within AWS.
131
131
132
132
### Contiv
133
133
134
-
[Contiv](https://github.com/contiv/netplugin) provides configurable networking (native l3 using BGP, overlay using vxlan, classic l2, or Cisco-SDN/ACI) for various use cases. [Contiv](http://contiv.io) is all open sourced.
134
+
[Contiv](https://github.com/contiv/netplugin) provides configurable networking (native l3 using BGP, overlay using vxlan, classic l2, or Cisco-SDN/ACI) for various use cases. [Contiv](https://contiv.io) is all open sourced.
135
135
136
136
### Contrail / Tungsten Fabric
137
137
138
-
[Contrail](http://www.juniper.net/us/en/products-services/sdn/contrail/contrail-networking/), based on [Tungsten Fabric](https://tungsten.io), is a truly open, multi-cloud network virtualization and policy management platform. Contrail and Tungsten Fabric are integrated with various orchestration systems such as Kubernetes, OpenShift, OpenStack and Mesos, and provide different isolation modes for virtual machines, containers/pods and bare metal workloads.
138
+
[Contrail](https://www.juniper.net/us/en/products-services/sdn/contrail/contrail-networking/), based on [Tungsten Fabric](https://tungsten.io), is a truly open, multi-cloud network virtualization and policy management platform. Contrail and Tungsten Fabric are integrated with various orchestration systems such as Kubernetes, OpenShift, OpenStack and Mesos, and provide different isolation modes for virtual machines, containers/pods and bare metal workloads.
139
139
140
140
### DANM
141
141
@@ -216,7 +216,7 @@ traffic to the internet.
216
216
217
217
### Kube-router
218
218
219
-
[Kube-router](https://github.com/cloudnativelabs/kube-router) is a purpose-built networking solution for Kubernetes that aims to provide high performance and operational simplicity. Kube-router provides a Linux [LVS/IPVS](http://www.linuxvirtualserver.org/software/ipvs.html)-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
219
+
[Kube-router](https://github.com/cloudnativelabs/kube-router) is a purpose-built networking solution for Kubernetes that aims to provide high performance and operational simplicity. Kube-router provides a Linux [LVS/IPVS](https://www.linuxvirtualserver.org/software/ipvs.html)-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
220
220
221
221
### L2 networks and linux bridging
222
222
@@ -226,8 +226,8 @@ Note that these instructions have only been tried very casually - it seems to
226
226
work, but has not been thoroughly tested. If you use this technique and
227
227
perfect the process, please let us know.
228
228
229
-
Follow the "With Linux Bridge devices" section of[this very nice
230
-
tutorial](http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/) from
229
+
Follow the "With Linux Bridge devices" section of
230
+
[this very nice tutorial](http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/) from
231
231
Lars Kellogg-Stedman.
232
232
233
233
### Multus (a Multi Network plugin)
@@ -236,6 +236,10 @@ Lars Kellogg-Stedman.
236
236
237
237
Multus supports all [reference plugins](https://github.com/containernetworking/plugins) (eg. [Flannel](https://github.com/containernetworking/plugins/tree/master/plugins/meta/flannel), [DHCP](https://github.com/containernetworking/plugins/tree/master/plugins/ipam/dhcp), [Macvlan](https://github.com/containernetworking/plugins/tree/master/plugins/main/macvlan)) that implement the CNI specification and 3rd party plugins (eg. [Calico](https://github.com/projectcalico/cni-plugin), [Weave](https://github.com/weaveworks/weave), [Cilium](https://github.com/cilium/cilium), [Contiv](https://github.com/contiv/netplugin)). In addition to it, Multus supports [SRIOV](https://github.com/hustcat/sriov-cni), [DPDK](https://github.com/Intel-Corp/sriov-cni), [OVS-DPDK & VPP](https://github.com/intel/vhost-user-net-plugin) workloads in Kubernetes with both cloud native and NFV based applications in Kubernetes.
238
238
239
+
### OVN4NFV-K8s-Plugin (OVN based CNI controller & plugin)
240
+
241
+
[OVN4NFV-K8S-Plugin](https://github.com/opnfv/ovn4nfv-k8s-plugin) is OVN based CNI controller plugin to provide cloud native based Service function chaining(SFC), Multiple OVN overlay networking, dynamic subnet creation, dynamic creation of virtual networks, VLAN Provider network, Direct provider network and pluggable with other Multi-network plugins, ideal for edge based cloud native workloads in Multi-cluster networking
242
+
239
243
### NSX-T
240
244
241
245
[VMware NSX-T](https://docs.vmware.com/en/VMware-NSX-T/index.html) is a network virtualization and security platform. NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks. In addition to vSphere hypervisors, these environments include other hypervisors such as KVM, containers, and bare metal.
@@ -244,7 +248,7 @@ Multus supports all [reference plugins](https://github.com/containernetworking/p
[Nuage](http://www.nuagenetworks.net) provides a highly scalable policy-based Software-Defined Networking (SDN) platform. Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
251
+
[Nuage](https://www.nuagenetworks.net) provides a highly scalable policy-based Software-Defined Networking (SDN) platform. Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
248
252
249
253
The Nuage platform uses overlays to provide seamless policy-based networking between Kubernetes Pods and non-Kubernetes environments (VMs and bare metal servers). Nuage's policy abstraction model is designed with applications in mind and makes it easy to declare fine-grained policies for applications.The platform's real-time analytics engine enables visibility and security monitoring for Kubernetes applications.
250
254
@@ -264,15 +268,15 @@ at [ovn-kubernetes](https://github.com/openvswitch/ovn-kubernetes).
264
268
265
269
### Project Calico
266
270
267
-
[Project Calico](http://docs.projectcalico.org/) is an open source container networking provider and network policy engine.
271
+
[Project Calico](https://docs.projectcalico.org/) is an open source container networking provider and network policy engine.
268
272
269
273
Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet, for both Linux (open source) and Windows (proprietary - available from [Tigera](https://www.tigera.io/essentials/)). Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking. Calico also provides fine-grained, intent based network security policy for Kubernetes pods via its distributed firewall.
270
274
271
275
Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka [canal](https://github.com/tigera/canal), or native GCE, AWS or Azure networking.
272
276
273
277
### Romana
274
278
275
-
[Romana](http://romana.io) is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network. Romana supports Kubernetes [Network Policy](/docs/concepts/services-networking/network-policies/) to provide isolation across network namespaces.
279
+
[Romana](https://romana.io) is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network. Romana supports Kubernetes [Network Policy](/docs/concepts/services-networking/network-policies/) to provide isolation across network namespaces.
0 commit comments