Skip to content

Commit a6d4eeb

Browse files
authored
Merge pull request #41378 from windsonsea/awarer
[zh] sync topology-aware-routing.md
2 parents 2cf93a3 + 5bad75b commit a6d4eeb

File tree

1 file changed

+351
-0
lines changed

1 file changed

+351
-0
lines changed
Lines changed: 351 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,351 @@
1+
---
2+
reviewers:
3+
- robscott
4+
title: 拓扑感知路由
5+
content_type: concept
6+
weight: 100
7+
description: >-
8+
**拓扑感知路由**提供了一种机制帮助保持网络流量处于流量发起的区域内。
9+
在集群中 Pod 之间优先使用相同区域的流量有助于提高可靠性、性能(网络延迟和吞吐量)或降低成本。
10+
---
11+
<!--
12+
reviewers:
13+
- robscott
14+
title: Topology Aware Routing
15+
content_type: concept
16+
weight: 100
17+
description: >-
18+
_Topology Aware Routing_ provides a mechanism to help keep network traffic within the zone
19+
where it originated. Preferring same-zone traffic between Pods in your cluster can help
20+
with reliability, performance (network latency and throughput), or cost.
21+
-->
22+
23+
<!-- overview -->
24+
25+
{{< feature-state for_k8s_version="v1.23" state="beta" >}}
26+
27+
{{< note >}}
28+
<!--
29+
Prior to Kubernetes 1.27, this feature was known as _Topology Aware Hints_.
30+
-->
31+
在 Kubernetes 1.27 之前,此特性称为**拓扑感知提示(Topology Aware Hint)**
32+
{{</ note >}}
33+
34+
<!--
35+
_Topology Aware Routing_ adjusts routing behavior to prefer keeping traffic in
36+
the zone it originated from. In some cases this can help reduce costs or improve
37+
network performance.
38+
-->
39+
**拓扑感知路由(Toplogy Aware Routing)** 调整路由行为,以优先保持流量在其发起区域内。
40+
在某些情况下,这有助于降低成本或提高网络性能。
41+
42+
<!-- body -->
43+
44+
<!--
45+
## Motivation
46+
47+
Kubernetes clusters are increasingly deployed in multi-zone environments.
48+
_Topology Aware Routing_ provides a mechanism to help keep traffic within the
49+
zone it originated from. When calculating the endpoints for a {{<
50+
glossary_tooltip term_id="Service" >}}, the EndpointSlice controller considers
51+
the topology (region and zone) of each endpoint and populates the hints field to
52+
allocate it to a zone. Cluster components such as {{< glossary_tooltip
53+
term_id="kube-proxy" text="kube-proxy" >}} can then consume those hints, and use
54+
them to influence how the traffic is routed (favoring topologically closer
55+
endpoints).
56+
-->
57+
## 动机 {#motivation}
58+
59+
Kubernetes 集群越来越多地部署在多区域环境中。
60+
**拓扑感知路由** 提供了一种机制帮助流量保留在其发起所在的区域内。
61+
计算 {{<glossary_tooltip term_id="Service">}} 的端点时,
62+
EndpointSlice 控制器考虑每个端点的物理拓扑(地区和区域),并填充提示字段以将其分配到区域。
63+
诸如 {{<glossary_tooltip term_id="kube-proxy" text="kube-proxy">}}
64+
等集群组件可以使用这些提示,影响流量的路由方式(优先考虑物理拓扑上更近的端点)。
65+
66+
<!--
67+
## Enabling Topology Aware Routing
68+
-->
69+
## 启用拓扑感知路由 {#enabling-topology-aware-routing}
70+
71+
{{< note >}}
72+
<!--
73+
Prior to Kubernetes 1.27, this behavior was controlled using the
74+
`service.kubernetes.io/topology-aware-hints` annotation.
75+
-->
76+
在 Kubernetes 1.27 之前,此行为是通过 `service.kubernetes.io/topology-aware-hints` 注解来控制的。
77+
{{</ note >}}
78+
79+
<!--
80+
You can enable Topology Aware Routing for a Service by setting the
81+
`service.kubernetes.io/topology-mode` annotation to `Auto`. When there are
82+
enough endpoints available in each zone, Topology Hints will be populated on
83+
EndpointSlices to allocate individual endpoints to specific zones, resulting in
84+
traffic being routed closer to where it originated from.
85+
-->
86+
你可以通过将 `service.kubernetes.io/topology-mode` 注解设置为 `Auto` 来启用 Service 的拓扑感知路由。
87+
当每个区域中有足够的端点可用时,系统将为 EndpointSlices 填充拓扑提示,把每个端点分配给特定区域,
88+
从而使流量被路由到更接近其来源的位置。
89+
90+
<!--
91+
## When it works best
92+
93+
This feature works best when:
94+
-->
95+
## 何时效果最佳 {#when-it-works-best}
96+
97+
此特性在以下场景中的工作效果最佳:
98+
99+
<!--
100+
### 1. Incoming traffic is evenly distributed
101+
102+
If a large proportion of traffic is originating from a single zone, that traffic
103+
could overload the subset of endpoints that have been allocated to that zone.
104+
This feature is not recommended when incoming traffic is expected to originate
105+
from a single zone.
106+
-->
107+
### 1. 入站流量均匀分布 {#incoming-traffic-is-evently-distributed}
108+
109+
如果大部分流量源自同一个区域,则该流量可能会使分配到该区域的端点子集过载。
110+
当预计入站流量源自同一区域时,不建议使用此特性。
111+
112+
<!--
113+
### 2. The Service has 3 or more endpoints per zone {#three-or-more-endpoints-per-zone}
114+
115+
In a three zone cluster, this means 9 or more endpoints. If there are fewer than
116+
3 endpoints per zone, there is a high (≈50%) probability that the EndpointSlice
117+
controller will not be able to allocate endpoints evenly and instead will fall
118+
back to the default cluster-wide routing approach.
119+
-->
120+
### 2. 服务在每个区域具有至少 3 个端点 {#three-or-more-endpoints-per-zone}
121+
122+
在一个三区域的集群中,这意味着有至少 9 个端点。如果每个区域的端点少于 3 个,
123+
则 EndpointSlice 控制器很大概率(约 50%)无法平均分配端点,而是回退到默认的集群范围的路由方法。
124+
125+
<!--
126+
## How It Works
127+
128+
The "Auto" heuristic attempts to proportionally allocate a number of endpoints
129+
to each zone. Note that this heuristic works best for Services that have a
130+
significant number of endpoints.
131+
-->
132+
## 工作原理 {#how-it-works}
133+
134+
“自动”启发式算法会尝试按比例分配一定数量的端点到每个区域。
135+
请注意,这种启发方式对具有大量端点的 Service 效果最佳。
136+
137+
<!--
138+
### EndpointSlice controller {#implementation-control-plane}
139+
140+
The EndpointSlice controller is responsible for setting hints on EndpointSlices
141+
when this heuristic is enabled. The controller allocates a proportional amount of
142+
endpoints to each zone. This proportion is based on the
143+
[allocatable](/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable)
144+
CPU cores for nodes running in that zone. For example, if one zone had 2 CPU
145+
cores and another zone only had 1 CPU core, the controller would allocate twice
146+
as many endpoints to the zone with 2 CPU cores.
147+
-->
148+
### EndpointSlice 控制器 {#implementation-control-plane}
149+
150+
当启用此启发方式时,EndpointSlice 控制器负责在各个 EndpointSlice 上设置提示信息。
151+
控制器按比例给每个区域分配一定比例数量的端点。
152+
这个比例基于在该区域中运行的节点的[可分配](/zh-cn/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable)
153+
CPU 核心数。例如,如果一个区域有 2 个 CPU 核心,而另一个区域只有 1 个 CPU 核心,
154+
那么控制器将给那个有 2 CPU 的区域分配两倍数量的端点。
155+
156+
<!--
157+
The following example shows what an EndpointSlice looks like when hints have
158+
been populated:
159+
-->
160+
以下示例展示了提供提示信息后 EndpointSlice 的样子:
161+
162+
```yaml
163+
apiVersion: discovery.k8s.io/v1
164+
kind: EndpointSlice
165+
metadata:
166+
name: example-hints
167+
labels:
168+
kubernetes.io/service-name: example-svc
169+
addressType: IPv4
170+
ports:
171+
- name: http
172+
protocol: TCP
173+
port: 80
174+
endpoints:
175+
- addresses:
176+
- "10.1.2.3"
177+
conditions:
178+
ready: true
179+
hostname: pod-1
180+
zone: zone-a
181+
hints:
182+
forZones:
183+
- name: "zone-a"
184+
```
185+
186+
### kube-proxy {#implementation-kube-proxy}
187+
188+
<!--
189+
The kube-proxy component filters the endpoints it routes to based on the hints set by
190+
the EndpointSlice controller. In most cases, this means that the kube-proxy is able
191+
to route traffic to endpoints in the same zone. Sometimes the controller allocates endpoints
192+
from a different zone to ensure more even distribution of endpoints between zones.
193+
This would result in some traffic being routed to other zones.
194+
-->
195+
kube-proxy 组件依据 EndpointSlice 控制器设置的提示,过滤由它负责路由的端点。
196+
在大多数场合,这意味着 kube-proxy 可以把流量路由到同一个区域的端点。
197+
有时,控制器在另一不同的区域中分配端点,以确保在多个区域之间更平均地分配端点。
198+
这会导致部分流量被路由到其他区域。
199+
200+
<!--
201+
## Safeguards
202+
-->
203+
## 保护措施 {#safeguards}
204+
205+
<!--
206+
The Kubernetes control plane and the kube-proxy on each node apply some
207+
safeguard rules before using Topology Aware Hints. If these don't check out,
208+
the kube-proxy selects endpoints from anywhere in your cluster, regardless of the
209+
zone.
210+
-->
211+
Kubernetes 控制平面和每个节点上的 kube-proxy 在使用拓扑感知提示信息前,会应用一些保护措施规则。
212+
如果规则无法顺利通过,kube-proxy 将无视区域限制,从集群中的任意位置选择端点。
213+
214+
<!--
215+
1. **Insufficient number of endpoints:** If there are less endpoints than zones
216+
in a cluster, the controller will not assign any hints.
217+
-->
218+
1. **端点数量不足:** 如果一个集群中,端点数量少于区域数量,控制器不创建任何提示。
219+
220+
<!--
221+
2. **Impossible to achieve balanced allocation:** In some cases, it will be
222+
impossible to achieve a balanced allocation of endpoints among zones. For
223+
example, if zone-a is twice as large as zone-b, but there are only 2
224+
endpoints, an endpoint allocated to zone-a may receive twice as much traffic
225+
as zone-b. The controller does not assign hints if it can't get this "expected
226+
overload" value below an acceptable threshold for each zone. Importantly this
227+
is not based on real-time feedback. It is still possible for individual
228+
endpoints to become overloaded.
229+
-->
230+
2. **不可能实现均衡分配:** 在一些场合中,不可能实现端点在区域中的平衡分配。
231+
例如,假设 zone-a 比 zone-b 大两倍,但只有 2 个端点,
232+
那分配到 zone-a 的端点可能收到比 zone-b 多两倍的流量。
233+
如果控制器不能确保此“期望的过载”值低于每一个区域可接受的阈值,控制器将不添加提示信息。
234+
重要的是,这不是基于实时反馈。所以对于特定的端点仍有可能超载。
235+
236+
<!--
237+
3. **One or more Nodes has insufficient information:** If any node does not have
238+
a `topology.kubernetes.io/zone` label or is not reporting a value for
239+
allocatable CPU, the control plane does not set any topology-aware endpoint
240+
hints and so kube-proxy does not filter endpoints by zone.
241+
-->
242+
3. **一个或多个 Node 信息不足:** 如果任一节点没有设置标签 `topology.kubernetes.io/zone`,
243+
或没有上报可分配的 CPU 数据,控制平面将不会设置任何拓扑感知提示,
244+
进而 kube-proxy 也就不能根据区域来过滤端点。
245+
246+
<!--
247+
4. **One or more endpoints does not have a zone hint:** When this happens,
248+
the kube-proxy assumes that a transition from or to Topology Aware Hints is
249+
underway. Filtering endpoints for a Service in this state would be dangerous
250+
so the kube-proxy falls back to using all endpoints.
251+
-->
252+
4. **至少一个端点没有设置区域提示:** 当这种情况发生时,
253+
kube-proxy 会假设从拓扑感知提示到拓扑感知路由(或反方向)的迁移仍在进行中,
254+
在这种场合下过滤 Service 的端点是有风险的,所以 kube-proxy 回退到使用所有端点。
255+
256+
<!--
257+
5. **A zone is not represented in hints:** If the kube-proxy is unable to find
258+
at least one endpoint with a hint targeting the zone it is running in, it falls
259+
back to using endpoints from all zones. This is most likely to happen as you add
260+
a new zone into your existing cluster.
261+
-->
262+
5. **提示中不存在某区域:** 如果 kube-proxy 无法找到提示中指向它当前所在的区域的端点,
263+
它将回退到使用来自所有区域的端点。当你向现有集群新增新的区域时,这种情况发生概率很高。
264+
265+
<!--
266+
## Constraints
267+
-->
268+
## 限制 {#constraints}
269+
270+
<!--
271+
* Topology Aware Hints are not used when either `externalTrafficPolicy` or
272+
`internalTrafficPolicy` is set to `Local` on a Service. It is possible to use
273+
both features in the same cluster on different Services, just not on the same
274+
Service.
275+
-->
276+
* 当 Service 的 `externalTrafficPolicy` 或 `internalTrafficPolicy` 设置值为 `Local` 时,
277+
系统将不使用拓扑感知提示信息。你可以在同一集群中的不同服务上使用这两个特性,但不能在同一个服务上这么做。
278+
279+
<!--
280+
* This approach will not work well for Services that have a large proportion of
281+
traffic originating from a subset of zones. Instead this assumes that incoming
282+
traffic will be roughly proportional to the capacity of the Nodes in each
283+
zone.
284+
-->
285+
* 这种方法不适用于大部分流量来自于一部分区域的 Service。
286+
相反,这项技术的假设是入站流量与各区域中节点的服务能力成比例关系。
287+
288+
<!--
289+
* The EndpointSlice controller ignores unready nodes as it calculates the
290+
proportions of each zone. This could have unintended consequences if a large
291+
portion of nodes are unready.
292+
-->
293+
* EndpointSlice 控制器在计算各区域的比例时,会忽略未就绪的节点。
294+
在大部分节点未就绪的场景下,这样做会带来非预期的结果。
295+
296+
<!--
297+
* The EndpointSlice controller ignores nodes with the
298+
`node-role.kubernetes.io/control-plane` or `node-role.kubernetes.io/master`
299+
label set. This could be problematic if workloads are also running on those
300+
nodes.
301+
-->
302+
* EndpointSlice 控制器忽略设置了 `node-role.kubernetes.io/control-plane` 或
303+
`node-role.kubernetes.io/master` 标签的节点。如果工作负载也在这些节点上运行,也可能会产生问题。
304+
305+
<!--
306+
* The EndpointSlice controller does not take into account {{< glossary_tooltip
307+
text="tolerations" term_id="toleration" >}} when deploying or calculating the
308+
proportions of each zone. If the Pods backing a Service are limited to a
309+
subset of Nodes in the cluster, this will not be taken into account.
310+
-->
311+
* EndpointSlice 控制器在分派或计算各区域的比例时,并不会考虑
312+
{{< glossary_tooltip text="容忍度" term_id="toleration" >}}。
313+
如果 Service 背后的各 Pod 被限制只能运行在集群节点的一个子集上,计算比例时不会考虑这点。
314+
315+
<!--
316+
* This may not work well with autoscaling. For example, if a lot of traffic is
317+
originating from a single zone, only the endpoints allocated to that zone will
318+
be handling that traffic. That could result in {{< glossary_tooltip
319+
text="Horizontal Pod Autoscaler" term_id="horizontal-pod-autoscaler" >}}
320+
either not picking up on this event, or newly added pods starting in a
321+
different zone.
322+
-->
323+
* 这项技术和自动扩缩容机制之间可能存在冲突。例如,如果大量流量来源于同一个区域,
324+
那只有分配到该区域的端点才可用来处理流量。这会导致
325+
{{< glossary_tooltip text="Pod 自动水平扩缩容" term_id="horizontal-pod-autoscaler" >}}
326+
要么不能处理这种场景,要么会在别的区域添加 Pod。
327+
328+
<!--
329+
## Custom heuristics
330+
-->
331+
## 自定义启发方式 {#custom-heuristics}
332+
333+
<!--
334+
Kubernetes is deployed in many different ways, there is no single heuristic for
335+
allocating endpoints to zones will work for every use case. A key goal of this
336+
feature is to enable custom heuristics to be developed if the built in heuristic
337+
does not work for your use case. The first steps to enable custom heuristics
338+
were included in the 1.27 release. This is a limited implementation that may not
339+
yet cover some relevant and plausible situations.
340+
-->
341+
Kubernetes 的部署方式有很多种,没有一种按区域分配端点的启发式方法能够适用于所有场景。
342+
此特性的一个关键目标是:如果内置的启发方式不能满足你的使用场景,则可以开发自定义的启发方式。
343+
启用自定义启发方式的第一步包含在了 1.27 版本中。
344+
这是一个限制性较强的实现,可能尚未涵盖一些重要的、可进一步探索的场景。
345+
346+
## {{% heading "whatsnext" %}}
347+
348+
<!--
349+
* Follow the [Connecting Applications with Services](/docs/tutorials/services/connect-applications-service/) tutorial
350+
-->
351+
* 参阅[使用 Service 连接到应用](/zh-cn/docs/tutorials/services/connect-applications-service/)教程

0 commit comments

Comments
 (0)