|
1 | | -需要先写如何安装运行,然后写一个性能,然后链接到如何使用 claude code 接入的文档。 |
| 1 | +# Running Kimi-K2-Thinking with SGLang and KT-Kernel |
| 2 | + |
| 3 | +This tutorial demonstrates how to run Kimi-K2 model inference using SGLang integrated with KT-Kernel for CPU-GPU heterogeneous inference. This setup enables efficient deployment of large MoE models by offloading experts to CPU. |
| 4 | + |
| 5 | +## Table of Contents |
| 6 | + |
| 7 | +- [Hardware Requirements](#hardware-requirements) |
| 8 | +- [Prerequisites](#prerequisites) |
| 9 | +- [Step 1: Download Model Weights](#step-1-download-model-weights) |
| 10 | +- [Step 2: Launch SGLang Server](#step-2-launch-sglang-server) |
| 11 | +- [Step 3: Send Inference Requests](#step-3-send-inference-requests) |
| 12 | + |
| 13 | +## Hardware Requirements |
| 14 | + |
| 15 | +**Minimum Configuration:** |
| 16 | +- **GPU**: NVIDIA RTX 4090 48GB (or equivalent with at least 48GB VRAM available) |
| 17 | +- **RAM**: At least 650GB system memory |
| 18 | +- **Storage**: ~600GB for model weights (native INT4 weight, same weight dir for CPU and GPU) |
| 19 | + |
| 20 | +**Tested Configuration:** |
| 21 | + |
| 22 | +- **GPU**: 1/2/4/8x NVIDIA RTX 4090/L20 48GB |
| 23 | +- **CPU**: 2x Intel(R) Xeon(R) Platinum 8488C |
| 24 | +- **RAM**: 2TB DDR5 4800MHz |
| 25 | +- **OS**: Linux (Ubuntu 20.04+ recommended) |
| 26 | + |
| 27 | +## Prerequisites |
| 28 | + |
| 29 | +Before starting, ensure you have: |
| 30 | + |
| 31 | +1. **KT-Kernel installed** - Follow the [installation guide](./kt-kernel_intro.md#installation) |
| 32 | +2. **SGLang installed** - Follow [SGLang integration steps](./kt-kernel_intro.md#integration-with-sglang) |
| 33 | + |
| 34 | +Note: Currently, please clone our custom SGLang repository: |
| 35 | + |
| 36 | +``` |
| 37 | +git clone https://github.com/kvcache-ai/sglang.git |
| 38 | +git checkout kimi_k2 |
| 39 | +cd sglang && pip install -e "python[all]" |
| 40 | +``` |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | +1. **CUDA toolkit** - Compatible with your GPU (CUDA 11.8+ recommended) |
| 45 | +2. **Hugging Face CLI** - For downloading models: |
| 46 | + ```bash |
| 47 | + pip install huggingface-hub |
| 48 | + ``` |
| 49 | + |
| 50 | +## Step 1: Download Model Weights |
| 51 | + |
| 52 | +```bash |
| 53 | +# Create a directory for models |
| 54 | +mkdir -p /path/to/models |
| 55 | +cd /path/to/models |
| 56 | + |
| 57 | +# Download Kimi-K2-Thinking (INT4 for both CPU and GPU) |
| 58 | +huggingface-cli download moonshotai/Kimi-K2-Thinking \ |
| 59 | + --local-dir /path/to/kimi-k2-thinking |
| 60 | +``` |
| 61 | + |
| 62 | +**Note:** Replace `/path/to/models` with your actual storage path throughout this tutorial. |
| 63 | + |
| 64 | +## Step 2: Launch SGLang Server |
| 65 | + |
| 66 | +Start the SGLang server with KT-Kernel integration for CPU-GPU heterogeneous inference. |
| 67 | + |
| 68 | + |
| 69 | +### Launch Command (2x RTX 4090 Example) |
| 70 | + |
| 71 | +```bash |
| 72 | +python -m sglang.launch_server \ |
| 73 | + --host 0.0.0.0 \ |
| 74 | + --port 30001 \ |
| 75 | + --model /path/to/kimi-k2-thinking \ |
| 76 | + --kt-weight-path /path/to/kimi-k2-thinking \ |
| 77 | + --kt-cpuinfer 96 \ |
| 78 | + --kt-threadpool-count 2 \ |
| 79 | + --kt-num-gpu-experts 8 \ |
| 80 | + --kt-method RAWINT4 \ |
| 81 | + --kt-gpu-prefill-token-threshold 400 \ |
| 82 | + --kt-max-deferred-experts-per-token 1 \ |
| 83 | + --trust-remote-code \ |
| 84 | + --mem-fraction-static 0.94 \ |
| 85 | + --served-model-name Kimi-K2-Thinking \ |
| 86 | + --enable-mixed-chunk \ |
| 87 | + --tensor-parallel-size 2 \ |
| 88 | + --enable-p2p-check \ |
| 89 | + --disable-shared-experts-fusion \ |
| 90 | + --chunked-prefill-size 65536 \ |
| 91 | + --max-total-tokens 65536 \ |
| 92 | + --attention-backend flashinfer |
| 93 | +``` |
| 94 | + |
| 95 | +It takes about 2~3 minutes to start the server. |
| 96 | + |
| 97 | +See [KT-Kernel Parameters](https://github.com/kvcache-ai/ktransformers/tree/main/kt-kernel#kt-kernel-parameters) for detailed parameter tuning guidelines. |
| 98 | + |
| 99 | +### Key Parameters |
| 100 | + |
| 101 | +| Parameter | Description | |
| 102 | +|-----------|-------------| |
| 103 | +| `--kt-method RAWINT4` | CPU and GPU use the same INT4 weight. Set `--model` and `--kt-weight-path` to the same directory. | |
| 104 | +| `--kt-num-gpu-experts` | Number of experts kept on GPU for decoding. | |
| 105 | +| `--kt-gpu-prefill-token-threshold` | Token count threshold for prefill strategy. Below: hybrid CPU+GPU. Above: layerwise GPU prefill. | |
| 106 | +| `--chunked-prefill-size` | Maximum tokens per prefill batch. | |
| 107 | +| `--max-total-tokens` | Maximum total tokens in KV cache. | |
| 108 | + |
| 109 | +### About `--kt-gpu-prefill-token-threshold` |
| 110 | + |
| 111 | +This parameter controls the prefill strategy: |
| 112 | + |
| 113 | +- **$\leq$ threshold**: Uses hybrid CPU+GPU prefill. No extra VRAM needed, but performance degrades slowly as token count increases. |
| 114 | +- **> threshold**: Uses layerwise GPU prefill. Performance scales exponentially up to `chunked-prefill-size`, but requires 9GB+ extra VRAM. |
| 115 | + |
| 116 | +### Troubleshooting OOM |
| 117 | + |
| 118 | +Layerwise prefill requires extra VRAM (~9GB + incremental cost with prefill length). If you encounter OOM, adjust these parameters based on your use case and hardware (refer to the recommended parameters table below): |
| 119 | + |
| 120 | +| Parameter | VRAM Impact | |
| 121 | +|-----------|-------------| |
| 122 | +| `--kt-num-gpu-experts` | Reduces expert weight VRAM usage | |
| 123 | +| `--chunked-prefill-size` | Reduces prefill extra VRAM allocation | |
| 124 | +| `--max-total-tokens` | Reduces KV cache VRAM usage | |
| 125 | + |
| 126 | +**Tip:** Test with an input of length `chunked-prefill-size` to verify your configuration won't OOM during prefill. |
| 127 | + |
| 128 | + |
| 129 | +### Recommended Parameters |
| 130 | + |
| 131 | +| GPU Config | `kt-num-gpu-experts` | `max-total-tokens` | `chunked-prefill-size` | |
| 132 | +|------------|----------------------|---------------------|------------------------| |
| 133 | +| 1x RTX 4090 (48GB) | 1 | 32768 | 32768 | |
| 134 | +| 2x RTX 4090 (48GB) | 8 | 65536 | 65536 | |
| 135 | +| 4x RTX 4090 (48GB) | 30 | 80000 | 65536 | |
| 136 | +| 8x RTX 4090 (48GB) | 80 | 100000 | 65536 | |
| 137 | + |
| 138 | +### Performance |
| 139 | + |
| 140 | +The following performance benchmarks were measured with single concurrency at maximum prefill length (32768 tokens): |
| 141 | + |
| 142 | +| GPU Config | Prefill Throughput | |
| 143 | +|------------|-------------------| |
| 144 | +| 1x RTX 4090 (48GB) | 290 tokens/s | |
| 145 | +| 2x RTX 4090 (48GB) | 529 tokens/s | |
| 146 | +| 4x RTX 4090 (48GB) | 775 tokens/s | |
| 147 | +| 8x RTX 4090 (48GB) | 1060 tokens/s | |
| 148 | + |
| 149 | +## Step 3: Send Inference Requests |
| 150 | + |
| 151 | +Once the server is running, you can send inference requests using the OpenAI-compatible API. |
| 152 | + |
| 153 | +### Basic Chat Completion Request |
| 154 | + |
| 155 | +```bash |
| 156 | +curl -s http://localhost:30001/v1/chat/completions \ |
| 157 | + -H "Content-Type: application/json" \ |
| 158 | + -d '{ |
| 159 | + "model": "Kimi-K2-Thinking", |
| 160 | + "stream": false, |
| 161 | + "messages": [ |
| 162 | + {"role": "user", "content": "hi"} |
| 163 | + ] |
| 164 | + }' |
| 165 | +``` |
| 166 | + |
| 167 | +### Example Response |
| 168 | + |
| 169 | +```json |
| 170 | +{ |
| 171 | + "id": "cd0905562bf44513947284f80cc5634b", |
| 172 | + "object": "chat.completion", |
| 173 | + "created": 1764921457, |
| 174 | + "model": "Kimi-K2-Thinking", |
| 175 | + "choices": [ |
| 176 | + { |
| 177 | + "index": 0, |
| 178 | + "message": { |
| 179 | + "role": "assistant", |
| 180 | + "content": " <think> The user says \"hi\". This is a very simple greeting. I should respond in a friendly and helpful manner. Since I'm an AI assistant, I should be professional but approachable.\n\nPossible responses:\n1. \"Hello! How can I help you today?\"\n2. \"Hi there! What can I do for you?\"\n3. \"Hello! It's nice to hear from you. What would you like to talk about?\"\n4. \"Hi! I'm here to assist you with any questions you might have.\"\n\nI think option 1 is the most standard and professional. It's direct, friendly, and opens the door for the user to ask their question. I should keep it concise.\n\nLet me go with: \"Hello! How can I help you today?\" </think> Hello! How can I help you today?", |
| 181 | + "reasoning_content": null, |
| 182 | + "tool_calls": null |
| 183 | + }, |
| 184 | + "logprobs": null, |
| 185 | + "finish_reason": "stop", |
| 186 | + "matched_stop": 163586 |
| 187 | + } |
| 188 | + ], |
| 189 | + "usage": { |
| 190 | + "prompt_tokens": 26, |
| 191 | + "total_tokens": 189, |
| 192 | + "completion_tokens": 163, |
| 193 | + "prompt_tokens_details": null, |
| 194 | + "reasoning_tokens": 0 |
| 195 | + }, |
| 196 | + "metadata": { |
| 197 | + "weight_version": "default" |
| 198 | + } |
| 199 | +} |
| 200 | +``` |
| 201 | + |
| 202 | +## Advance Use Case: Running Claude Code with Native Kimi-K2-Thinking Local Backend |
| 203 | + |
| 204 | +Add the following parameters to the SGLang launch command above to enable tool calling support: |
| 205 | + |
| 206 | +```bash |
| 207 | +--tool-call-parser kimi_k2 --reasoning-parser kimi_k2 |
| 208 | +``` |
| 209 | + |
| 210 | +With these parameters enabled, you can use [claude-code-router](https://github.com/musistudio/claude-code-router) to connect Kimi-K2-Thinking as a local backend for [Claude Code](https://github.com/anthropics/claude-code). |
| 211 | + |
| 212 | +## Additional Resources |
| 213 | + |
| 214 | +- [KT-Kernel Documentation](../../../kt-kernel/README.md) |
| 215 | +- [SGLang GitHub](https://github.com/sgl-project/sglang) |
| 216 | +- [Claude Code Router](https://github.com/musistudio/claude-code-router) - Route Claude Code to custom backends |
0 commit comments