-
Notifications
You must be signed in to change notification settings - Fork 224
Open
Description
问题背景 (Background):
TimeMixer目前没有提供模型量化功能,这限制了其在资源受限设备上的部署能力。量化可以显著减小模型大小并提高推理速度,特别是在边缘设备上。
主要需求 (Requirements):
- 支持INT8和FP16量化
- 提供训练后量化(Post-training quantization)
- 支持量化感知训练(Quantization-aware training)
- 保持性能损失在可接受范围内
技术实现方案 (Implementation Plan):
# 训练后量化示例 (Post-training quantization example)
def quantize_model(model_path, quantized_model_path, calibration_data_loader, backend="qnnpack"):
"""
对预训练的TimeMixer模型进行量化
Quantize a pre-trained TimeMixer model
Args:
model_path: 预训练模型路径 (path to pretrained model)
quantized_model_path: 量化后模型保存路径 (path to save quantized model)
calibration_data_loader: 用于校准的数据加载器 (data loader for calibration)
backend: 量化后端,可选qnnpack或fbgemm (quantization backend, qnnpack or fbgemm)
"""
# 设置量化后端
torch.backends.quantized.engine = backend
# 加载预训练模型
model = Model(args)
model.load_state_dict(torch.load(model_path))
model.eval()
# 准备量化
model_fp32_prepared = torch.quantization.prepare(model)
# 使用校准数据集
for x_enc, x_mark_enc, x_dec, x_mark_dec in calibration_data_loader:
model_fp32_prepared(x_enc, x_mark_enc, x_dec, x_mark_dec)
# 转换为量化模型
model_int8 = torch.quantization.convert(model_fp32_prepared)
# 保存量化模型
torch.save(model_int8.state_dict(), quantized_model_path)
return model_int8
# 量化感知训练示例 (Quantization-aware training example)
class QuantizableTimeMixer(nn.Module):
def __init__(self, configs):
super().__init__()
self.model = Model(configs)
# 添加量化存根 (Add quantization stubs)
self.quant = torch.quantization.QuantStub()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# 量化输入
x_enc = self.quant(x_enc)
x_mark_enc = self.quant(x_mark_enc)
x_dec = self.quant(x_dec)
x_mark_dec = self.quant(x_mark_dec)
# 模型推理
outputs = self.model(x_enc, x_mark_enc, x_dec, x_mark_dec)
# 反量化输出
return self.dequant(outputs)
def fuse_model(self):
"""融合模型中的操作以提高量化性能 (Fuse operations to improve quantization performance)"""
for m in self.model.modules():
if hasattr(m, 'fuse_model'):
m.fuse_model()使用方法 (Usage):
# 训练后量化使用方法 (Post-training quantization usage)
python quantize.py --model_path ./checkpoints/best_model.pth --backend qnnpack
# 量化感知训练使用方法 (Quantization-aware training usage)
python train.py --task_name long_term_forecast --quantization_aware True --qat_start_epoch 5预期效果 (Expected Results):
- 模型大小减小约75%(FP32→INT8)
- 推理速度提升2-4倍
- 内存占用减少约70%
- 性能下降控制在2%以内
特别注意事项 (Special Considerations):
- 量化可能对某些层的精度影响较大,特别是激活函数
- 不同硬件平台对量化的支持程度不同
- 在量化过程中可能需要特别处理自定义操作
Metadata
Metadata
Assignees
Labels
No labels