diff --git a/.clang-format b/.clang-format index 47d96b6b40983..117e6986f6f8c 100644 --- a/.clang-format +++ b/.clang-format @@ -22,7 +22,7 @@ AllowShortIfStatementsOnASingleLine: Never AllowShortLambdasOnASingleLine: Inline AllowShortLoopsOnASingleLine: false AlwaysBreakBeforeMultilineStrings: true -BinPackArguments: false +BinPackArguments: true BinPackParameters: false # OnePerLine BitFieldColonSpacing: Both BreakBeforeBraces: Custom # Attach diff --git a/README.md b/README.md index a01ef6d503e40..17f59e988e3d1 100644 --- a/README.md +++ b/README.md @@ -137,6 +137,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview) - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32) - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) +- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) #### Multimodal diff --git a/ci/run.sh b/ci/run.sh index d51ba443859c2..a250393ee97ce 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -386,10 +386,10 @@ function gg_run_open_llama_7b_v2 { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -520,8 +520,8 @@ function gg_run_pythia_1_4b { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -651,10 +651,10 @@ function gg_run_pythia_2_8b { (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" diff --git a/common/arg.cpp b/common/arg.cpp index 81c4005c5e7fc..fcee0c4470077 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -1106,7 +1106,7 @@ static void common_params_print_completion(common_params_context & ctx_arg) { printf("\"\n\n"); printf(" case \"$prev\" in\n"); - printf(" --model)\n"); + printf(" --model|-m)\n"); printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); printf(" return 0\n"); printf(" ;;\n"); @@ -1545,10 +1545,18 @@ common_params_context common_params_parser_init(common_params & params, llama_ex } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); add_opt(common_arg( - {"-fa", "--flash-attn"}, - string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), - [](common_params & params) { - params.flash_attn = true; + {"-fa", "--flash-attn"}, "FA", + string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')", llama_flash_attn_type_name(params.flash_attn_type)), + [](common_params & params, const std::string & value) { + if (value == "on" || value == "enabled" || value == "1") { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED; + } else if (value == "off" || value == "disabled" || value == "0") { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED; + } else if (value == "auto" || value == "-1") { + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; + } else { + throw std::runtime_error(string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str())); + } } ).set_env("LLAMA_ARG_FLASH_ATTN")); add_opt(common_arg( @@ -2555,7 +2563,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex {"--lora"}, "FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)", [](common_params & params, const std::string & value) { - params.lora_adapters.push_back({ std::string(value), 1.0, nullptr }); + params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); @@ -2563,7 +2571,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex {"--lora-scaled"}, "FNAME", "SCALE", "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", [](common_params & params, const std::string & fname, const std::string & scale) { - params.lora_adapters.push_back({ fname, std::stof(scale), nullptr }); + params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); @@ -2954,13 +2962,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.endpoint_metrics = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); - add_opt(common_arg( - {"--slots"}, - string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), - [](common_params & params) { - params.endpoint_slots = true; - } - ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); add_opt(common_arg( {"--props"}, string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), @@ -2968,6 +2969,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.endpoint_props = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); + add_opt(common_arg( + {"--slots"}, + string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), + [](common_params & params) { + params.endpoint_slots = true; + } + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); add_opt(common_arg( {"--no-slots"}, "disables slots monitoring endpoint", @@ -3459,8 +3467,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3475,8 +3481,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3491,8 +3495,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3508,10 +3510,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; - params.speculative.n_gpu_layers = 99; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; @@ -3527,10 +3526,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf"; params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; - params.speculative.n_gpu_layers = 99; params.port = 8012; - params.n_gpu_layers = 99; - params.flash_attn = true; + params.n_ubatch = 1024; + params.n_batch = 1024; + params.n_ctx = 0; + params.n_cache_reuse = 256; + } + ).set_examples({LLAMA_EXAMPLE_SERVER})); + + add_opt(common_arg( + {"--fim-qwen-30b-default"}, + string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"), + [](common_params & params) { + params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF"; + params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf"; + params.port = 8012; params.n_ubatch = 1024; params.n_batch = 1024; params.n_ctx = 0; diff --git a/common/chat.cpp b/common/chat.cpp index 111b4a21b368c..955c42852a9be 100644 --- a/common/chat.cpp +++ b/common/chat.cpp @@ -622,6 +622,7 @@ const char * common_chat_format_name(common_chat_format format) { case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B"; case COMMON_CHAT_FORMAT_GRANITE: return "Granite"; case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS"; + case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS"; default: throw std::runtime_error("Unknown chat format"); } @@ -2059,6 +2060,94 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) { } } +static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) { + // Parse thinking tags first - this handles the main reasoning content + builder.try_parse_reasoning("", ""); + + if (!builder.syntax().parse_tool_calls) { + builder.add_content(builder.consume_rest()); + return; + } + + // Parse tool calls - Seed-OSS uses format + static const common_regex tool_call_begin_regex(""); + static const common_regex tool_call_end_regex(""); + static const common_regex function_regex("]+)>"); + static const common_regex param_regex("]+)>"); + + while (auto tool_res = builder.try_find_regex(tool_call_begin_regex)) { + builder.consume_spaces(); // Consume whitespace after + + // Look for function call inside tool call, ignore any content before it + if (auto func_res = builder.try_find_regex(function_regex, std::string::npos, false)) { + auto function_name = builder.str(func_res->groups[1]); + + // Parse Seed-OSS parameters value + json args = json::object(); + // Parse all parameters + while (auto param_res = builder.try_find_regex(param_regex, std::string::npos, false)) { + // again, ignore noise around parameters + auto param_name = builder.str(param_res->groups[1]); + builder.move_to(param_res->groups[0].end); + builder.consume_spaces(); // Consume whitespace after parameter + auto savedPos = builder.pos(); + if (auto param_parse = builder.try_find_literal("")) { + auto param = param_parse->prelude; + builder.move_to(savedPos); + try { + if (auto param_res = builder.try_consume_json()) { + args[param_name] = param_res->json; + } else { + args[param_name] = param; + } + } catch (json::exception &) { + args[param_name] = param; + } + } else { + throw common_chat_msg_partial_exception("Incomplete tool parameter"); + } + } + // Look for closing function tag + auto end_func = builder.try_find_literal(""); + if (end_func) { + builder.move_to(end_func->groups[0].end); + builder.consume_spaces(); // Consume whitespace after + + // Add the tool call with parsed arguments, but only if we REALLY got the literal + auto eaten_fragment = builder.input().substr(end_func->groups[0].begin, end_func->groups[0].end); + auto funlen = std::string("").length(); + if (eaten_fragment.length() >= funlen && eaten_fragment.substr(0, funlen) == std::string("")) { + if (!builder.add_tool_call(function_name, "", args.dump())) { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + } else { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + } else { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + // Look for closing tool call tag + if (auto end_tool = builder.try_find_regex(tool_call_end_regex, std::string::npos, false)) { + builder.move_to(end_tool->groups[0].end); + builder.consume_spaces(); // Consume trailing whitespace after tool call + } else { + throw common_chat_msg_partial_exception("Incomplete tool call"); + } + } else { + // No function found - don't consume content here, let it be handled at the end + break; + } + } + + // Consume any remaining whitespace after all tool call processing + builder.consume_spaces(); + auto remaining = builder.consume_rest(); + // If there's any non-whitespace content remaining, add it as content + if (!string_strip(remaining).empty()) { + builder.add_content(remaining); + } +} + static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) { common_chat_params data; data.prompt = apply(tmpl, inputs); @@ -2075,8 +2164,62 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha return data; } +static common_chat_params common_chat_params_init_seed_oss( + const common_chat_template & tmpl, + templates_params & params, + const common_chat_templates_inputs & inputs) +{ + common_chat_params data; + data.prompt = apply(tmpl, params); + data.format = COMMON_CHAT_FORMAT_SEED_OSS; + if (string_ends_with(data.prompt, "")) { + if (!inputs.enable_thinking) { + data.prompt += ""; + } else { + data.thinking_forced_open = true; + } + } + + if (params.tools.is_array() && !params.tools.empty()) { + data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED; + data.grammar = build_grammar([&](const common_grammar_builder & builder) { + std::vector tool_rules; + foreach_function(params.tools, [&](const json & tool) { + const auto & function = tool.at("function"); + std::string name = function.at("name"); + auto parameters = function.at("parameters"); + builder.resolve_refs(parameters); + + // Create rule for Seed-OSS function call format + std::string param_rules; + if (parameters.contains("properties")) { + for (const auto & [key, value] : parameters.at("properties").items()) { + param_rules += "\"\"" + builder.add_schema(name + "-arg-" + key, value) + + "\"\""; + } + } + + tool_rules.push_back(builder.add_rule(name + "-call", + "\"\" space \"\" space " + + param_rules + + " \"\" space \"\"")); + }); + + data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "" }); + + data.preserved_tokens = { + "", "", "", "", + "", "", + }; + + builder.add_rule("root", string_join(tool_rules, " | ")); + }); + } + return data; +} + static common_chat_params common_chat_templates_apply_jinja( - const struct common_chat_templates * tmpls, + const struct common_chat_templates * tmpls, const struct common_chat_templates_inputs & inputs) { templates_params params; @@ -2145,6 +2288,11 @@ static common_chat_params common_chat_templates_apply_jinja( return common_chat_params_init_gpt_oss(tmpl, params); } + // Seed-OSS + if (src.find("") != std::string::npos) { + return common_chat_params_init_seed_oss(tmpl, params, inputs); + } + // Use generic handler when mixing tools + JSON schema. // TODO: support that mix in handlers below. if ((params.tools.is_array() && params.json_schema.is_object())) { @@ -2303,6 +2451,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) { case COMMON_CHAT_FORMAT_GPT_OSS: common_chat_parse_gpt_oss(builder); break; + case COMMON_CHAT_FORMAT_SEED_OSS: + common_chat_parse_seed_oss(builder); + break; default: throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format)); } diff --git a/common/chat.h b/common/chat.h index d1e480c918794..b09ff3b126a2b 100644 --- a/common/chat.h +++ b/common/chat.h @@ -111,6 +111,7 @@ enum common_chat_format { COMMON_CHAT_FORMAT_COMMAND_R7B, COMMON_CHAT_FORMAT_GRANITE, COMMON_CHAT_FORMAT_GPT_OSS, + COMMON_CHAT_FORMAT_SEED_OSS, COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats }; diff --git a/common/common.cpp b/common/common.cpp index fdce1dcdec19b..0c92d4d57ddbf 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -901,7 +901,8 @@ struct common_init_result common_init_from_params(common_params & params) { llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams); if (model == NULL) { - LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str()); + LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", + __func__, params.model.path.c_str()); return iparams; } @@ -911,7 +912,8 @@ struct common_init_result common_init_from_params(common_params & params) { llama_context * lctx = llama_init_from_model(model, cparams); if (lctx == NULL) { - LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str()); + LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", + __func__, params.model.path.c_str()); llama_model_free(model); return iparams; } @@ -988,7 +990,12 @@ struct common_init_result common_init_from_params(common_params & params) { return iparams; } + char buf[1024]; la.ptr = lora.get(); + llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf)); + la.task_name = buf; + llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf)); + la.prompt_prefix = buf; iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters } @@ -1152,10 +1159,10 @@ struct llama_context_params common_context_params_to_llama(const common_params & cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.pooling_type = params.pooling_type; cparams.attention_type = params.attention_type; + cparams.flash_attn_type = params.flash_attn_type; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; - cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; cparams.op_offload = !params.no_op_offload; cparams.swa_full = params.swa_full; diff --git a/common/common.h b/common/common.h index 390dda5e531be..85b3b879d4536 100644 --- a/common/common.h +++ b/common/common.h @@ -34,6 +34,9 @@ struct common_adapter_lora_info { std::string path; float scale; + std::string task_name; + std::string prompt_prefix; + struct llama_adapter_lora * ptr; }; @@ -309,6 +312,7 @@ struct common_params { enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings + enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention struct common_params_sampling sampling; struct common_params_speculative speculative; @@ -372,7 +376,6 @@ struct common_params { bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool cont_batching = true; // insert new sequences for decoding on-the-fly - bool flash_attn = false; // flash attention bool no_perf = false; // disable performance metrics bool ctx_shift = false; // context shift on infinite text generation bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) @@ -441,7 +444,7 @@ struct common_params { // "advanced" endpoints are disabled by default for better security bool webui = true; - bool endpoint_slots = false; + bool endpoint_slots = true; bool endpoint_props = false; // only control POST requests, not GET bool endpoint_metrics = false; diff --git a/common/sampling.cpp b/common/sampling.cpp index 9c04d35fd00a2..c710ee173c0ed 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -426,8 +426,29 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) { // helpers -llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) { - return &gsmpl->cur_p; +llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) { + auto * res = &gsmpl->cur_p; + + if (do_sort && !res->sorted) { + // remember the selected token before sorting + const llama_token id = res->data[res->selected].id; + + std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.p > b.p; + }); + + // restore the selected token after sorting + for (size_t i = 0; i < res->size; ++i) { + if (res->data[i].id == id) { + res->selected = i; + break; + } + } + + res->sorted = true; + } + + return res; } llama_token common_sampler_last(const struct common_sampler * gsmpl) { diff --git a/common/sampling.h b/common/sampling.h index 2064421db4e80..e198eecda3810 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -86,7 +86,9 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl); // helpers // access the internal list of current candidate tokens -llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl); +// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability) +// the .sorted flag of the result indicates whether the returned candidates are sorted +llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort); // get the last accepted token llama_token common_sampler_last(const struct common_sampler * gsmpl); diff --git a/common/speculative.cpp b/common/speculative.cpp index 262b2c23e720f..3e83b0964c855 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft( common_sampler_sample(smpl, ctx_dft, 0, true); - const auto * cur_p = common_sampler_get_candidates(smpl); + const auto * cur_p = common_sampler_get_candidates(smpl, true); for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 35fadbc83ea1b..908435d7e5f00 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -72,6 +72,7 @@ class ModelBase: endianess: gguf.GGUFEndian use_temp_file: bool lazy: bool + dry_run: bool part_names: list[str] is_safetensors: bool hparams: dict[str, Any] @@ -111,6 +112,7 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file self.lazy = not eager or (remote_hf_model_id is not None) + self.dry_run = dry_run self.remote_hf_model_id = remote_hf_model_id if remote_hf_model_id is not None: self.is_safetensors = True @@ -300,10 +302,6 @@ def prepare_tensors(self): # data = data_torch.squeeze().numpy() data = data_torch.numpy() - # if data ends up empty, it means data_torch was a scalar tensor -> restore - if len(data.shape) == 0: - data = data_torch.numpy() - n_dims = len(data.shape) data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) @@ -1216,6 +1214,55 @@ def _try_set_pooling_type(self) -> None: raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported") self.gguf_writer.add_pooling_type(pooling_type) + def _set_vocab_interns1(self): + tokens: list[str] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) + vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab()) + vocab_size = self.hparams.get("vocab_size", len(vocab)) + assert max(vocab.values()) < vocab_size + + tokpre = self.get_vocab_base_pre(tokenizer) + + reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()} + added_vocab = tokenizer.get_added_vocab() + + added_tokens_decoder = tokenizer.added_tokens_decoder + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token: str = reverse_vocab[i] + if token in added_vocab: + # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized. + # To avoid unexpected issues - we make sure to normalize non-normalized tokens + if not added_tokens_decoder[i].normalized: + previous_token = token + token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False)) + if previous_token != token: + logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer") + + if added_tokens_decoder[i].special or self.does_token_look_special(token): + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.USER_DEFINED) + else: + toktypes.append(gguf.TokenType.NORMAL) + tokens.append(token) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) + special_vocab._set_special_token("bos", 151643) + special_vocab.add_to_gguf(self.gguf_writer) + class MmprojModel(ModelBase): model_type = ModelType.MMPROJ @@ -2932,7 +2979,8 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter if "language_model." in name: name = name.replace("language_model.", "") # for InternVL if name.startswith("mlp") or name.startswith("multi_modal_projector") \ - or name.startswith("vision_model") or name.startswith("audio_tower"): + or name.startswith("vision_model") or name.startswith("audio_tower") \ + or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"): # skip vision and audio tensors return [] yield from super().modify_tensors(data_torch, name, bid) @@ -3109,7 +3157,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter yield from super().modify_tensors(data_torch, name, bid) -@ModelBase.register("Ernie4_5_ForCausalLM") +@ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM") class Ernie4_5Model(TextModel): model_arch = gguf.MODEL_ARCH.ERNIE4_5 @@ -3604,6 +3652,19 @@ def prepare_tensors(self): class Qwen3Model(Qwen2Model): model_arch = gguf.MODEL_ARCH.QWEN3 + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False) + self.origin_hf_arch = hparams.get('architectures', [None])[0] + + def set_vocab(self): + # deal with intern-s1-mini + if self.origin_hf_arch == 'InternS1ForConditionalGeneration': + self._set_vocab_interns1() + return + + super().set_vocab() + @ModelBase.register("Qwen3MoeForCausalLM") class Qwen3MoeModel(Qwen2MoeModel): @@ -3620,73 +3681,7 @@ def set_vocab(self): self._set_vocab_interns1() return - try: - self._set_vocab_sentencepiece() - except FileNotFoundError: - self._set_vocab_gpt2() - - def _set_vocab_interns1(self): - tokens: list[str] = [] - toktypes: list[int] = [] - - from transformers import AutoTokenizer - tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) - vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab()) - vocab_size = self.hparams.get("vocab_size", len(vocab)) - assert max(vocab.values()) < vocab_size - - tokpre = self.get_vocab_base_pre(tokenizer) - - reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()} - added_vocab = tokenizer.get_added_vocab() - - added_tokens_decoder = tokenizer.added_tokens_decoder - - for i in range(vocab_size): - if i not in reverse_vocab: - tokens.append(f"[PAD{i}]") - toktypes.append(gguf.TokenType.UNUSED) - else: - token: str = reverse_vocab[i] - if token in added_vocab: - # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized. - # To avoid unexpected issues - we make sure to normalize non-normalized tokens - if not added_tokens_decoder[i].normalized: - previous_token = token - token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False)) - if previous_token != token: - logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer") - - if added_tokens_decoder[i].special or self.does_token_look_special(token): - toktypes.append(gguf.TokenType.CONTROL) - else: - toktypes.append(gguf.TokenType.USER_DEFINED) - else: - toktypes.append(gguf.TokenType.NORMAL) - tokens.append(token) - - self.gguf_writer.add_tokenizer_model("gpt2") - self.gguf_writer.add_tokenizer_pre(tokpre) - self.gguf_writer.add_token_list(tokens) - self.gguf_writer.add_token_types(toktypes) - - special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) - special_tokens_map_file = self.dir_model / 'special_tokens_map.json' - additional_special_tokens = [] - if special_tokens_map_file.is_file(): - with open(special_tokens_map_file, encoding = 'utf-8') as f: - additional_special_tokens = json.load(f).get('additional_special_tokens', []) - tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json' - if tokenizer_cfg_file.is_file(): - with open(tokenizer_cfg_file, encoding = 'utf-8') as f: - added_tokens_decoder = json.load(f).get('added_tokens_decoder', {}) - token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']} - for token in additional_special_tokens: - if token in token2ids_map: - special_vocab._set_special_token(token, token2ids_map[token]) - special_vocab._set_special_token('eos', 151645) - special_vocab._set_special_token("bos", 151643) - special_vocab.add_to_gguf(self.gguf_writer) + super().set_vocab() @ModelBase.register("GPT2LMHeadModel") @@ -4874,11 +4869,35 @@ def modify_tensors(self, data_torch, name, bid): @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification") class XLMRobertaModel(BertModel): model_arch = gguf.MODEL_ARCH.BERT + _lora_files = {} + _lora_names = [] - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any): + hparams = kwargs.pop("hparams", None) + if hparams is None: + hparams = ModelBase.load_hparams(dir_model, False) + + if lora_names := hparams.get("lora_adaptations"): + self._lora_names = lora_names + self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3 + + super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs) self._xlmroberta_tokenizer_init() + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if self._lora_names: + for name in self._lora_names: + fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-") + self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run) + + return super().generate_extra_tensors() + + def set_type(self): + for lora_writer in self._lora_files.values(): + lora_writer.add_type(gguf.GGUFType.ADAPTER) + lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora") + super().set_type() + def set_vocab(self): self._xlmroberta_set_vocab() @@ -4888,13 +4907,62 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter if name.startswith("roberta."): name = name[8:] + # jina-embeddings-v3 + if ".parametrizations." in name: + name = name.replace(".parametrizations.", ".") + if name.endswith(".original"): + name = name[:-9] + # position embeddings start at pad_token_id + 1, so just chop down the weight tensor if name == "embeddings.position_embeddings.weight": if self._position_offset is not None: data_torch = data_torch[self._position_offset:,:] + if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"): + if name.startswith("pooler.dense"): + return [] + + num_loras = data_torch.size(0) + assert num_loras == len(self._lora_names) + + # Split out each LoRA in their own GGUF + for i, lora_writer in enumerate(self._lora_files.values()): + new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower() + data = data_torch[i, :, :] + # Transpose/flip token_embd/types into correct shape + if new_name == "token_embd.weight.lora_b": + data = data.T + elif new_name.startswith("token_types.weight."): + new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b") + lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32) + + return [] + return super().modify_tensors(data_torch, name, bid) + def set_gguf_parameters(self): + super().set_gguf_parameters() + + # jina-embeddings-v3 + if rotary_emb_base := self.hparams.get("rotary_emb_base"): + self.gguf_writer.add_rope_freq_base(rotary_emb_base) + lora_alpha = self.hparams.get("lora_alpha") + if lora_prompt_prefixes := self.hparams.get("task_instructions"): + assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys()) + for lora_name, lora_writer in self._lora_files.items(): + lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0) + lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name) + if lora_prompt_prefixes: + lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name]) + + def write(self): + super().write() + for lora_writer in self._lora_files.values(): + lora_writer.write_header_to_file() + lora_writer.write_kv_data_to_file() + lora_writer.write_tensors_to_file(progress=True) + lora_writer.close() + @ModelBase.register("GemmaForCausalLM") class GemmaModel(TextModel): @@ -6257,9 +6325,11 @@ def prepare_tensors(self): raise ValueError(f"Unprocessed experts: {experts}") -@ModelBase.register("DeepseekV2ForCausalLM") -@ModelBase.register("DeepseekV3ForCausalLM") -@ModelBase.register("KimiVLForConditionalGeneration") +@ModelBase.register( + "DeepseekV2ForCausalLM", + "DeepseekV3ForCausalLM", + "KimiVLForConditionalGeneration", +) class DeepseekV2Model(TextModel): model_arch = gguf.MODEL_ARCH.DEEPSEEK2 @@ -7472,9 +7542,13 @@ def __init__(self, *args, **kwargs): ] # n_group and d_inner are used during reshape_tensors for mamba2 - self.d_model = self.find_hparam(["hidden_size", "d_model"]) - self.n_group = self.find_hparam(["n_groups"]) - self.d_inner = self.find_hparam(["expand"]) * self.d_model + # NOTE: Explicitly include hparam prefix prefix for d_model to + # disambiguate with top-level head_dim + # NOTE 2: If needed for future models, this can be isolated in a method + # to separate the prefix setting and teh keys used + self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"]) + self.n_group = self.find_hparam(["n_groups", "num_groups"]) + self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model def get_attn_layers(self): # Explicit list of layer type names @@ -7535,12 +7609,12 @@ def set_gguf_parameters(self): ## Mamba mixer params ## self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"])) - self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"])) + self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"])) self.gguf_writer.add_ssm_group_count(self.n_group) self.gguf_writer.add_ssm_inner_size(self.d_inner) # NOTE: The mamba_dt_rank is _not_ the right field for how this is used # in llama.cpp - self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"])) + self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"])) ## Attention params ## head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"]) @@ -7567,6 +7641,55 @@ def set_vocab(self): Mamba2Model.set_vocab(self) +@ModelBase.register("NemotronHForCausalLM") +class NemotronHModel(GraniteHybridModel): + """Hybrid mamba2/attention model from NVIDIA""" + model_arch = gguf.MODEL_ARCH.NEMOTRON_H + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # Save the top-level head_dim for later + self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim")) + assert self.head_dim is not None, "Could not find the attention head dim in config" + + # Don't use expand to calculate d_inner + self.d_inner = self.find_hparam(["num_heads"]) * self.d_model + + # Update the ssm / attn / mlp layers + # M: Mamba2, *: Attention, -: MLP + hybrid_override_pattern = self.hparams["hybrid_override_pattern"] + self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"] + self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"] + + def get_attn_layers(self): + hybrid_override_pattern = self.hparams["hybrid_override_pattern"] + assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!" + return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"] + + def set_gguf_parameters(self): + super().set_gguf_parameters() + + self.gguf_writer.add_key_length(self.head_dim) + self.gguf_writer.add_value_length(self.head_dim) + + # Set feed_forward_length + # NOTE: This will trigger an override warning. This is preferrable to + # duplicating all the parent logic + n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"]) + self.gguf_writer.add_feed_forward_length([ + n_ff if i in self._mlp_layers else 0 for i in range(self.block_count) + ]) + + def set_vocab(self): + super().set_vocab() + + # The tokenizer _does_ add a BOS token (via post_processor type + # TemplateProcessing) but does not set add_bos_token to true in the + # config, so we need to explicitly override it here. + self.gguf_writer.add_add_bos_token(True) + + @ModelBase.register("BailingMoeForCausalLM") class BailingMoeModel(TextModel): model_arch = gguf.MODEL_ARCH.BAILINGMOE @@ -8510,6 +8633,43 @@ def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", " return "mm.2.weight" return super().map_tensor_name(name, try_suffixes) + +@ModelBase.register("KimiVLForConditionalGeneration") +class KimiVLModel(MmprojModel): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.hparams_vision is not None + self.hparams_vision["image_size"] = 64 * 14 # for compatibility + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL) + self.gguf_writer.add_vision_use_gelu(True) + self.gguf_writer.add_vision_projector_scale_factor(2) + # eps is the same as pytorch's default value + assert self.hparams_vision is not None + self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5)) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name + + if is_vision_tensor: + if "pos_emb.weight" in name: + data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2]) + elif "wqkv" in name: + split_dim = 0 if "weight" in name else -1 + wq, wk, wv = data_torch.chunk(3, dim=split_dim) + return [ + (self.map_tensor_name(name.replace("wqkv", "wq")), wq), + (self.map_tensor_name(name.replace("wqkv", "wk")), wk), + (self.map_tensor_name(name.replace("wqkv", "wv")), wv) + ] + + return [(self.map_tensor_name(name), data_torch)] + + return [] # skip other tensors + ###### CONVERSION LOGIC ###### diff --git a/docs/backend/CANN.md b/docs/backend/CANN.md index 325e09bd380c0..2d8866e3bd495 100755 --- a/docs/backend/CANN.md +++ b/docs/backend/CANN.md @@ -314,3 +314,7 @@ Controls automatic cleanup of the memory pool. This option is only effective whe Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU. +### GGML_CANN_DISABLE_ACL_GRAPH + +When this variable is set, ACL graph execution is disabled and operators are executed in an op-by-op (eager) mode. +This mode is mainly intended for debugging or for cases where the overhead of graph construction and execution is not desirable. diff --git a/docs/build.md b/docs/build.md index b35a898ba9ba4..dcbcce7549ad2 100644 --- a/docs/build.md +++ b/docs/build.md @@ -59,8 +59,6 @@ cmake --build build --config Release cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF cmake --build build-arm64-windows-llvm-release ``` - Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels. - For building with ninja generator and clang compiler as default: -set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64 ```bash diff --git a/docs/function-calling.md b/docs/function-calling.md index 37eacaf3100c1..67cf785c7a95d 100644 --- a/docs/function-calling.md +++ b/docs/function-calling.md @@ -21,6 +21,8 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll - Use `--chat-template-file` to override the template when appropriate (see examples below) - Generic support may consume more tokens and be less efficient than a model's native format. +- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload. +
Show some common templates and which format handler they use diff --git a/docs/multimodal/minicpmv4.0.md b/docs/multimodal/minicpmv4.0.md index 65887d96019d3..d04cb338cecb5 100644 --- a/docs/multimodal/minicpmv4.0.md +++ b/docs/multimodal/minicpmv4.0.md @@ -6,7 +6,7 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model ### Build llama.cpp -Readme modification time: 20250206 +Readme modification time: 20250731 If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) diff --git a/docs/multimodal/minicpmv4.5.md b/docs/multimodal/minicpmv4.5.md new file mode 100644 index 0000000000000..8fea5e611da90 --- /dev/null +++ b/docs/multimodal/minicpmv4.5.md @@ -0,0 +1,47 @@ +## MiniCPM-V 4.5 + +### Prepare models and code + +Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch model from huggingface to "MiniCPM-V-4_5" folder. + + +### Build llama.cpp +Readme modification time: 20250826 + +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) + +Clone llama.cpp: +```bash +git clone https://github.com/ggerganov/llama.cpp +cd llama.cpp +``` + +Build llama.cpp using `CMake`: +```bash +cmake -B build +cmake --build build --config Release +``` + + +### Usage of MiniCPM-V 4 + +Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) by us) + +```bash +python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4_5 +python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4_5 --minicpmv-projector ../MiniCPM-V-4_5/minicpmv.projector --output-dir ../MiniCPM-V-4_5/ --minicpmv_version 6 +python ./convert_hf_to_gguf.py ../MiniCPM-V-4_5/model + +# quantize int4 version +./build/bin/llama-quantize ../MiniCPM-V-4_5/model/ggml-model-f16.gguf ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf Q4_K_M +``` + + +Inference on Linux or Mac +```bash +# run in single-turn mode +./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# run in conversation mode +./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf +``` diff --git a/examples/diffusion/diffusion-cli.cpp b/examples/diffusion/diffusion-cli.cpp index 8431dcea8fe2a..abf7fb357326b 100644 --- a/examples/diffusion/diffusion-cli.cpp +++ b/examples/diffusion/diffusion-cli.cpp @@ -564,7 +564,7 @@ int main(int argc, char ** argv) { ctx_params.n_ctx = params.n_ctx; ctx_params.n_batch = params.n_batch; ctx_params.n_ubatch = params.n_ubatch; - ctx_params.flash_attn = params.flash_attn; + ctx_params.flash_attn_type = params.flash_attn_type; ctx_params.no_perf = params.no_perf; ctx_params.type_k = params.cache_type_k; ctx_params.type_v = params.cache_type_v; diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index 61eefc7248a7e..d4ef751fbb63a 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -28,9 +28,40 @@ static std::string ggml_ne_string(const ggml_tensor * t) { return str; } +static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) { + size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; + float v; + if (type == GGML_TYPE_F16) { + v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]); + } else if (type == GGML_TYPE_F32) { + v = *(float *) &data[i]; + } else if (type == GGML_TYPE_I64) { + v = (float) *(int64_t *) &data[i]; + } else if (type == GGML_TYPE_I32) { + v = (float) *(int32_t *) &data[i]; + } else if (type == GGML_TYPE_I16) { + v = (float) *(int16_t *) &data[i]; + } else if (type == GGML_TYPE_I8) { + v = (float) *(int8_t *) &data[i]; + } else { + GGML_ABORT("fatal error"); + } + return v; +} + static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { GGML_ASSERT(n > 0); float sum = 0; + for (int64_t i3 = 0; i3 < ne[3]; i3++) { + for (int64_t i2 = 0; i2 < ne[2]; i2++) { + for (int64_t i1 = 0; i1 < ne[1]; i1++) { + for (int64_t i0 = 0; i0 < ne[0]; i0++) { + const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3); + sum += v; + } + } + } + } for (int64_t i3 = 0; i3 < ne[3]; i3++) { LOG(" [\n"); for (int64_t i2 = 0; i2 < ne[2]; i2++) { @@ -50,25 +81,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne LOG("..., "); i0 = ne[0] - n; } - size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; - float v; - if (type == GGML_TYPE_F16) { - v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]); - } else if (type == GGML_TYPE_F32) { - v = *(float *) &data[i]; - } else if (type == GGML_TYPE_I64) { - v = (float) *(int64_t *) &data[i]; - } else if (type == GGML_TYPE_I32) { - v = (float) *(int32_t *) &data[i]; - } else if (type == GGML_TYPE_I16) { - v = (float) *(int16_t *) &data[i]; - } else if (type == GGML_TYPE_I8) { - v = (float) *(int8_t *) &data[i]; - } else { - GGML_ABORT("fatal error"); - } + const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3); LOG("%12.4f", v); - sum += v; if (i0 < ne[0] - 1) LOG(", "); } LOG("],\n"); diff --git a/examples/model-conversion/Makefile b/examples/model-conversion/Makefile index 27d95b4f2bf5e..ac7a4147297c5 100644 --- a/examples/model-conversion/Makefile +++ b/examples/model-conversion/Makefile @@ -1,4 +1,5 @@ -# Validation functions +MAKEFLAGS += --no-print-directory + define validate_model_path @if [ -z "$(MODEL_PATH)" ]; then \ echo "Error: MODEL_PATH must be provided either as:"; \ @@ -17,6 +18,13 @@ define validate_embedding_model_path fi endef +define quantize_model + @CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \ + TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \ + ./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)" + @echo "Export the quantized model path to $(2) variable in your environment" +endef + ### ### Casual Model targets/recipes ### @@ -29,6 +37,20 @@ causal-convert-model: METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ ./scripts/causal/convert-model.sh +causal-convert-mm-model-bf16: OUTTYPE=bf16 +causal-convert-mm-model-bf16: MM_OUTTYPE=f16 +causal-convert-mm-model-bf16: causal-convert-mm-model + +causal-convert-mm-model: + $(call validate_model_path,causal-convert-mm-model) + @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ + METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ + ./scripts/causal/convert-model.sh + + @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ + METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ + ./scripts/causal/convert-model.sh --mmproj + causal-run-original-model: $(call validate_model_path,causal-run-original-model) @MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py @@ -41,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model @MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH} causal-run-original-embeddings: - @./scripts/causal/run-casual-gen-embeddings-org.sh + @./scripts/causal/run-casual-gen-embeddings-org.py causal-run-converted-embeddings: @./scripts/causal/run-converted-model-embeddings-logits.sh @@ -67,9 +89,15 @@ causal-quantize-Q8_0: causal-quantize-model causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0 causal-quantize-Q4_0: causal-quantize-model +# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the +# token embedding and output types to Q8_0 instead of the default Q6_K. +causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0 +causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0 +causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0 +causal-quantize-qat-Q4_0: causal-quantize-model + causal-quantize-model: - @CONVERTED_MODEL="$(CONVERTED_MODEL)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" ./scripts/utils/quantize.sh ${CONVERTED_MODEL} ${QUANTIZED_TYPE} - @echo "Export the quantized model path to QUANTIZED_MODEL variable in your environment" + $(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL) causal-run-quantized-model: @QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL} @@ -117,9 +145,15 @@ embedding-quantize-Q8_0: embedding-quantize-model embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0 embedding-quantize-Q4_0: embedding-quantize-model +# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the +# token embedding and output types to Q8_0 instead of the default Q6_K. +embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0 +embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0 +embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0 +embedding-quantize-qat-Q4_0: embedding-quantize-model + embedding-quantize-model: - @./scripts/utils/quantize.sh ${CONVERTED_EMBEDDING_MODEL} ${QUANTIZED_TYPE} - @echo "Export the quantized model path to QUANTIZED_EMBEDDING_MODEL variable in your environment" + $(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL) embedding-run-quantized-model: @./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL} @@ -144,6 +178,15 @@ perplexity-run: hf-create-model: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" +hf-create-model-dry-run: + @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d + +hf-create-model-embedding: + @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e + +hf-create-model-embedding-dry-run: + @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d + hf-create-model-private: @./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p diff --git a/examples/model-conversion/README.md b/examples/model-conversion/README.md index c924a6be3cd26..5e5992d964bbd 100644 --- a/examples/model-conversion/README.md +++ b/examples/model-conversion/README.md @@ -137,6 +137,18 @@ Then the quantized model can be run using the following command: (venv) $ make causal-run-quantized-model ``` +### Quantizing QAT (Quantization Aware Training) models +When quantizing to `Q4_0`, the default data type for the token embedding weights +will be `Q6_K`. For models that are going to be uploaded to ggml-org it is +recommended to use `Q8_0` instead for the embeddings and output tensors. +The reason is that although `Q6_K` is smaller in size, it requires more compute +to unpack, which can hurt performance during output generation when the entire +embedding matrix must be dequantized to compute vocabulary logits. `Q8_0` +provides practically full quality with better computational efficiency. +```console +(venv) $ make causal-quantize-qat-Q4_0 +``` + ## Embedding Language Model Conversion @@ -238,6 +250,18 @@ Then the quantized model can be run using the following command: (venv) $ make embedding-run-quantized-model ``` +### Quantizing QAT (Quantization Aware Training) models +When quantizing to `Q4_0`, the default data type for the token embedding weights +will be `Q6_K`. For models that are going to be uploaded to ggml-org it is +recommended to use `Q8_0` instead for the embeddings and output tensors. +The reason is that although `Q6_K` is smaller in size, it requires more compute +to unpack, which can hurt performance during output generation when the entire +embedding matrix must be dequantized to compute vocabulary logits. `Q8_0` +provides practically full quality with better computational efficiency. +```console +(venv) $ make embedding-quantize-qat-Q4_0 +``` + ## Perplexity Evaluation ### Simple perplexity evaluation @@ -285,13 +309,21 @@ For the following targets a `HF_TOKEN` environment variable is required. This will create a new model repsository on Hugging Face with the specified model name. ```console -(venv) $ make hf-create-model MODEL_NAME='TestModel' NAMESPACE="danbev" +(venv) $ make hf-create-model MODEL_NAME='TestModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model" Repository ID: danbev/TestModel-GGUF Repository created: https://huggingface.co/danbev/TestModel-GGUF ``` Note that we append a `-GGUF` suffix to the model name to ensure a consistent naming convention for GGUF models. +An embedding model can be created using the following command: +```console +(venv) $ make hf-create-model-embedding MODEL_NAME='TestEmbeddingModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model" +``` +The only difference is that the model card for an embedding model will be different +with regards to the llama-server command and also how to access/call the embedding +endpoint. + ### Upload a GGUF model to model repository The following target uploads a model to an existing Hugging Face model repository. ```console diff --git a/examples/model-conversion/logits.cpp b/examples/model-conversion/logits.cpp index 2cac6a3b3eaae..ddc5e9005f9e0 100644 --- a/examples/model-conversion/logits.cpp +++ b/examples/model-conversion/logits.cpp @@ -112,6 +112,7 @@ int main(int argc, char ** argv) { ctx_params.no_perf = false; if (embedding_mode) { ctx_params.embeddings = true; + ctx_params.pooling_type = LLAMA_POOLING_TYPE_NONE; ctx_params.n_ubatch = ctx_params.n_batch; } diff --git a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh index 287158f638717..c53c89d48acc6 100755 --- a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/convert-model.sh b/examples/model-conversion/scripts/causal/convert-model.sh index 56b21f9baa673..32ffe132e7853 100755 --- a/examples/model-conversion/scripts/causal/convert-model.sh +++ b/examples/model-conversion/scripts/causal/convert-model.sh @@ -1,4 +1,20 @@ -#!/bin/bash +#!/usr/bin/env bash + +set -e + +# Parse command line arguments +MMPROJ="" +while [[ $# -gt 0 ]]; do + case $1 in + --mmproj) + MMPROJ="--mmproj" + shift + ;; + *) + shift + ;; + esac +done MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}" OUTPUT_DIR="${OUTPUT_DIR:-../../models}" @@ -11,12 +27,20 @@ echo "Model name: ${MODEL_NAME}" echo "Data type: ${TYPE}" echo "Converted model path:: ${CONVERTED_MODEL}" echo "Metadata override: ${METADATA_OVERRIDE}" -python ../../convert_hf_to_gguf.py --verbose \ - ${MODEL_PATH} \ - --outfile ${CONVERTED_MODEL} \ - --outtype ${TYPE} \ - --metadata "${METADATA_OVERRIDE}" + +CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose") +CMD_ARGS+=("${MODEL_PATH}") +CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}") +CMD_ARGS+=("--outtype" "${TYPE}") +[[ -n "$METADATA_OVERRIDE" ]] && CMD_ARGS+=("--metadata" "${METADATA_OVERRIDE}") +[[ -n "$MMPROJ" ]] && CMD_ARGS+=("${MMPROJ}") + +"${CMD_ARGS[@]}" echo "" echo "The environment variable CONVERTED_MODEL can be set to this path using:" echo "export CONVERTED_MODEL=$(realpath ${CONVERTED_MODEL})" +if [[ -n "$MMPROJ" ]]; then + mmproj_file="${OUTPUT_DIR}/mmproj-$(basename "${CONVERTED_MODEL}")" + echo "The mmproj model was created in $(realpath "$mmproj_file")" +fi diff --git a/examples/model-conversion/scripts/readme.md.template b/examples/model-conversion/scripts/causal/modelcard.template similarity index 100% rename from examples/model-conversion/scripts/readme.md.template rename to examples/model-conversion/scripts/causal/modelcard.template diff --git a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py similarity index 100% rename from examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh rename to examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py diff --git a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh index 64709f1798cb6..fa16a02c6599c 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/run-converted-model.sh b/examples/model-conversion/scripts/causal/run-converted-model.sh index e2762729e76a3..f5f567d4ffa12 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh index 35b5d71984c6e..1401dcb43ee92 100755 --- a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/convert-model.sh b/examples/model-conversion/scripts/embedding/convert-model.sh index 0609e35357bd4..0929e42413e67 100755 --- a/examples/model-conversion/scripts/embedding/convert-model.sh +++ b/examples/model-conversion/scripts/embedding/convert-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/modelcard.template b/examples/model-conversion/scripts/embedding/modelcard.template new file mode 100644 index 0000000000000..75c580524f667 --- /dev/null +++ b/examples/model-conversion/scripts/embedding/modelcard.template @@ -0,0 +1,48 @@ +--- +base_model: +- {base_model} +--- +# {model_name} GGUF + +Recommended way to run this model: + +```sh +llama-server -hf {namespace}/{model_name}-GGUF +``` + +Then the endpoint can be accessed at http://localhost:8080/embedding, for +example using `curl`: +```console +curl --request POST \ + --url http://localhost:8080/embedding \ + --header "Content-Type: application/json" \ + --data '{{"input": "Hello embeddings"}}' \ + --silent +``` + +Alternatively, the `llama-embedding` command line tool can be used: +```sh +llama-embedding -hf {namespace}/{model_name}-GGUF --verbose-prompt -p "Hello embeddings" +``` + +#### embd_normalize +When a model uses pooling, or the pooling method is specified using `--pooling`, +the normalization can be controlled by the `embd_normalize` parameter. + +The default value is `2` which means that the embeddings are normalized using +the Euclidean norm (L2). Other options are: +* -1 No normalization +* 0 Max absolute +* 1 Taxicab +* 2 Euclidean/L2 +* \>2 P-Norm + +This can be passed in the request body to `llama-server`, for example: +```sh + --data '{{"input": "Hello embeddings", "embd_normalize": -1}}' \ +``` + +And for `llama-embedding`, by passing `--embd-normalize `, for example: +```sh +llama-embedding -hf {namespace}/{model_name}-GGUF --embd-normalize -1 -p "Hello embeddings" +``` diff --git a/examples/model-conversion/scripts/embedding/run-converted-model.sh b/examples/model-conversion/scripts/embedding/run-converted-model.sh index 5896090411a79..24b28106275df 100755 --- a/examples/model-conversion/scripts/embedding/run-converted-model.sh +++ b/examples/model-conversion/scripts/embedding/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/create-collection-add-model.sh b/examples/model-conversion/scripts/utils/create-collection-add-model.sh index 4809da6cb6fac..485001b5feecc 100644 --- a/examples/model-conversion/scripts/utils/create-collection-add-model.sh +++ b/examples/model-conversion/scripts/utils/create-collection-add-model.sh @@ -1,4 +1,6 @@ +#!/usr/bin/env bash + COLLECTION_SLUG=$(python ./create_collection.py --return-slug) echo "Created collection: $COLLECTION_SLUG" diff --git a/examples/model-conversion/scripts/utils/curl-embedding-server.sh b/examples/model-conversion/scripts/utils/curl-embedding-server.sh new file mode 100755 index 0000000000000..7ed69e1ea50f5 --- /dev/null +++ b/examples/model-conversion/scripts/utils/curl-embedding-server.sh @@ -0,0 +1,6 @@ +#!/usr/bin/env bash +curl --request POST \ + --url http://localhost:8080/embedding \ + --header "Content-Type: application/json" \ + --data '{"input": "Hello world today"}' \ + --silent diff --git a/examples/model-conversion/scripts/utils/hf-create-model.py b/examples/model-conversion/scripts/utils/hf-create-model.py index 09bb8511ef13e..ea99bd886f4d1 100755 --- a/examples/model-conversion/scripts/utils/hf-create-model.py +++ b/examples/model-conversion/scripts/utils/hf-create-model.py @@ -26,21 +26,31 @@ def load_template_and_substitute(template_path, **kwargs): parser.add_argument('--org-base-model', '-b', help='Original Base model name', default="") parser.add_argument('--no-card', action='store_true', help='Skip creating model card') parser.add_argument('--private', '-p', action='store_true', help='Create private model') +parser.add_argument('--embedding', '-e', action='store_true', help='Use embedding model card template') +parser.add_argument('--dry-run', '-d', action='store_true', help='Print repository info and template without creating repository') args = parser.parse_args() repo_id = f"{args.namespace}/{args.model_name}-GGUF" print("Repository ID: ", repo_id) -repo_url = api.create_repo( - repo_id=repo_id, - repo_type="model", - private=args.private, - exist_ok=False -) +repo_url = None +if not args.dry_run: + repo_url = api.create_repo( + repo_id=repo_id, + repo_type="model", + private=args.private, + exist_ok=False + ) if not args.no_card: - template_path = "scripts/readme.md.template" + if args.embedding: + template_path = "scripts/embedding/modelcard.template" + else: + template_path = "scripts/causal/modelcard.template" + + print("Template path: ", template_path) + model_card_content = load_template_and_substitute( template_path, model_name=args.model_name, @@ -48,16 +58,21 @@ def load_template_and_substitute(template_path, **kwargs): base_model=args.org_base_model, ) - if model_card_content: - api.upload_file( - path_or_fileobj=model_card_content.encode('utf-8'), - path_in_repo="README.md", - repo_id=repo_id - ) - print("Model card created successfully.") + if args.dry_run: + print("\nTemplate Content:\n") + print(model_card_content) else: - print("Failed to create model card.") + if model_card_content: + api.upload_file( + path_or_fileobj=model_card_content.encode('utf-8'), + path_in_repo="README.md", + repo_id=repo_id + ) + print("Model card created successfully.") + else: + print("Failed to create model card.") -print(f"Repository created: {repo_url}") +if not args.dry_run and repo_url: + print(f"Repository created: {repo_url}") diff --git a/examples/model-conversion/scripts/utils/inspect-converted-model.sh b/examples/model-conversion/scripts/utils/inspect-converted-model.sh index e5b9324542e73..32d84826fa089 100755 --- a/examples/model-conversion/scripts/utils/inspect-converted-model.sh +++ b/examples/model-conversion/scripts/utils/inspect-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash # First try command line argument, then environment variable, then file CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}" diff --git a/examples/model-conversion/scripts/utils/perplexity-gen.sh b/examples/model-conversion/scripts/utils/perplexity-gen.sh index 3db0b3fd27ac3..4885acbae24d1 100755 --- a/examples/model-conversion/scripts/utils/perplexity-gen.sh +++ b/examples/model-conversion/scripts/utils/perplexity-gen.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh index 69b3438f598b3..a2545436a5c52 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run.sh b/examples/model-conversion/scripts/utils/perplexity-run.sh index 3bce7c8472153..68b38e662859b 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/quantize.sh b/examples/model-conversion/scripts/utils/quantize.sh index bcb87757543cb..c25c5c21f3c3e 100755 --- a/examples/model-conversion/scripts/utils/quantize.sh +++ b/examples/model-conversion/scripts/utils/quantize.sh @@ -1,9 +1,11 @@ -#!/bin/bash +#!/usr/bin/env bash set -e CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}" QUANTIZED_TYPE="${2:-"$QUANTIZED_TYPE"}" +TOKEN_EMBD_TYPE="${3:-"${TOKEN_EMBD_TYPE}"}" +OUTPUT_TYPE="${4:-"${OUTPUT_TYPE}"}" QUANTIZED_MODEL=$CONVERTED_MODEL # Final check if we have a model path @@ -14,6 +16,11 @@ if [ -z "$CONVERTED_MODEL" ]; then exit 1 fi +if [ -z "$QUANTIZED_TYPE" ]; then + echo "Error: QUANTIZED_TYPE is required" >&2 + exit 1 +fi + echo $CONVERTED_MODEL # Process the quantized model filename @@ -26,9 +33,16 @@ else exit 1 fi - cmake --build ../../build --target llama-quantize -j8 -../../build/bin/llama-quantize $CONVERTED_MODEL $QUANTIZED_MODEL $QUANTIZED_TYPE +echo $TOKEN_EMBD_TYPE +echo $OUTPUT_TYPE + +CMD_ARGS=("../../build/bin/llama-quantize") +[[ -n "$TOKEN_EMBD_TYPE" ]] && CMD_ARGS+=("--token-embedding-type" "$TOKEN_EMBD_TYPE") +[[ -n "$OUTPUT_TYPE" ]] && CMD_ARGS+=("--output-tensor-type" "$OUTPUT_TYPE") +CMD_ARGS+=("$CONVERTED_MODEL" "$QUANTIZED_MODEL" "$QUANTIZED_TYPE") + +"${CMD_ARGS[@]}" echo "Quantized model saved to: $QUANTIZED_MODEL" diff --git a/examples/model-conversion/scripts/utils/run-embedding-server.sh b/examples/model-conversion/scripts/utils/run-embedding-server.sh index 828fc47069772..d30b765964b0c 100755 --- a/examples/model-conversion/scripts/utils/run-embedding-server.sh +++ b/examples/model-conversion/scripts/utils/run-embedding-server.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e # diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 8449406a6d27a..5f5ac5eb64d38 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -244,7 +244,7 @@ int main(int argc, char ** argv) { // stochastic verification common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true); - auto & dist_tgt = *common_sampler_get_candidates(smpl); + auto & dist_tgt = *common_sampler_get_candidates(smpl, true); float p_tgt = 0.0f; float p_dft = 0.0f; @@ -493,7 +493,7 @@ int main(int argc, char ** argv) { common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true); - const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl); + const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true); for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index 2ead001e2c610..9ef88c6fd0a85 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -1,5 +1,5 @@ cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories. -project("ggml" C CXX) +project("ggml" C CXX ASM) include(CheckIncludeFileCXX) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) @@ -129,7 +129,9 @@ endif() option(GGML_LASX "ggml: enable lasx" ON) option(GGML_LSX "ggml: enable lsx" ON) option(GGML_RVV "ggml: enable rvv" ON) -option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF) +option(GGML_RV_ZFH "ggml: enable riscv zfh" ON) +option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON) +option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON) option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF) option(GGML_VXE "ggml: enable vxe" ON) option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877 diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h index a2977ea2e56d9..4f246f6ccd629 100644 --- a/ggml/include/ggml-backend.h +++ b/ggml/include/ggml-backend.h @@ -307,6 +307,9 @@ extern "C" { GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); + // Split graph without allocating it + GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + // Allocate and compute graph on the backend scheduler GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index e34feccc98a5e..f615ab4beecb1 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -31,6 +31,7 @@ // backend buffer type const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->iface.get_name(buft); } @@ -40,14 +41,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t return ggml_backend_buffer_init(buft, {}, NULL, 0); } + GGML_ASSERT(buft); return buft->iface.alloc_buffer(buft, size); } size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->iface.get_alignment(buft); } size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); // get_max_size is optional, defaults to SIZE_MAX if (buft->iface.get_max_size) { return buft->iface.get_max_size(buft); @@ -56,6 +60,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { } size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) { + GGML_ASSERT(buft); // get_alloc_size is optional, defaults to ggml_nbytes if (buft->iface.get_alloc_size) { size_t size = buft->iface.get_alloc_size(buft, tensor); @@ -66,6 +71,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s } bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); if (buft->iface.is_host) { return buft->iface.is_host(buft); } @@ -73,6 +79,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { } ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) { + GGML_ASSERT(buft); return buft->device; } @@ -110,10 +117,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { } size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->size; } void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); // get_base is optional if the buffer is zero-sized if (buffer->size == 0) { return NULL; @@ -127,6 +136,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { } enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + GGML_ASSERT(buffer); // init_tensor is optional if (buffer->iface.init_tensor) { return buffer->iface.init_tensor(buffer, tensor); @@ -135,6 +145,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s } void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); // clear is optional if the buffer is zero-sized if (buffer->size == 0) { return; @@ -160,6 +171,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { } void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + GGML_ASSERT(buffer); buffer->usage = usage; // FIXME: add a generic callback to the buffer interface @@ -169,14 +181,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe } enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->usage; } ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->buft; } void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); if (buffer->iface.reset) { buffer->iface.reset(buffer); } @@ -215,6 +230,7 @@ void ggml_backend_free(ggml_backend_t backend) { } ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { + GGML_ASSERT(backend); return ggml_backend_dev_buffer_type(backend->device); } @@ -231,6 +247,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) { } void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(backend); + GGML_ASSERT(tensor); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); @@ -242,6 +260,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * } void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(backend); + GGML_ASSERT(tensor); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); @@ -283,6 +303,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz } void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { + GGML_ASSERT(tensor); ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; if (size == 0) { @@ -298,6 +319,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size } void ggml_backend_synchronize(ggml_backend_t backend) { + GGML_ASSERT(backend); if (backend->iface.synchronize == NULL) { return; } @@ -306,18 +328,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) { } ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_create != NULL); return backend->iface.graph_plan_create(backend, cgraph); } void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_free != NULL); backend->iface.graph_plan_free(backend, plan); } enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.graph_plan_compute != NULL); return backend->iface.graph_plan_compute(backend, plan); @@ -330,22 +355,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_ } enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(backend); return backend->iface.graph_compute(backend, cgraph); } bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_ASSERT(backend); return ggml_backend_dev_supports_op(backend->device, op); } bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(backend); return ggml_backend_dev_supports_buft(backend->device, buft); } bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_ASSERT(backend); return ggml_backend_dev_offload_op(backend->device, op); } ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) { + GGML_ASSERT(backend); return backend->device; } @@ -381,6 +411,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b return; } + GGML_ASSERT(backend_dst); if (backend_dst->iface.cpy_tensor_async != NULL) { if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) { return; @@ -412,18 +443,21 @@ void ggml_backend_event_free(ggml_backend_event_t event) { } void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.event_record != NULL); backend->iface.event_record(backend, event); } void ggml_backend_event_synchronize(ggml_backend_event_t event) { + GGML_ASSERT(event); GGML_ASSERT(event->device->iface.event_synchronize); event->device->iface.event_synchronize(event->device, event); } void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + GGML_ASSERT(backend); GGML_ASSERT(backend->iface.event_wait != NULL); backend->iface.event_wait(backend, event); @@ -432,18 +466,22 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) // Backend device const char * ggml_backend_dev_name(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_name(device); } const char * ggml_backend_dev_description(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_description(device); } void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) { + GGML_ASSERT(device); device->iface.get_memory(device, free, total); } enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_type(device); } @@ -453,18 +491,22 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d } ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->reg; } ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) { + GGML_ASSERT(device); return device->iface.init_backend(device, params); } ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); return device->iface.get_buffer_type(device); } ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) { + GGML_ASSERT(device); if (device->iface.get_host_buffer_type == NULL) { return NULL; } @@ -473,18 +515,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t } ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) { + GGML_ASSERT(device); return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size); } bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + GGML_ASSERT(device); return device->iface.supports_op(device, op); } bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(device); return device->iface.supports_buft(device, buft); } bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) { + GGML_ASSERT(device); if (device->iface.offload_op != NULL) { return device->iface.offload_op(device, op); } @@ -495,18 +541,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te // Backend (reg) const char * ggml_backend_reg_name(ggml_backend_reg_t reg) { + GGML_ASSERT(reg); return reg->iface.get_name(reg); } size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) { + GGML_ASSERT(reg); return reg->iface.get_device_count(reg); } ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) { + GGML_ASSERT(reg); return reg->iface.get_device(reg, index); } void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) { + GGML_ASSERT(reg); if (!reg->iface.get_proc_address) { return NULL; } @@ -521,6 +571,7 @@ struct ggml_backend_multi_buffer_context { }; static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_free(ctx->buffers[i]); @@ -531,6 +582,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) } static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_clear(ctx->buffers[i], value); @@ -566,10 +618,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer } bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer; } void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + GGML_ASSERT(buffer); GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { @@ -597,7 +651,7 @@ static bool ggml_is_view_op(enum ggml_op op) { #endif #ifndef GGML_SCHED_MAX_SPLIT_INPUTS -#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC +#define GGML_SCHED_MAX_SPLIT_INPUTS 30 #endif #ifndef GGML_SCHED_MAX_COPIES @@ -848,7 +902,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru } // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend -static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { +void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { // reset splits sched->n_splits = 0; sched->n_graph_inputs = 0; @@ -1349,6 +1403,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { } static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); struct ggml_backend_sched_split * splits = sched->splits; ggml_tensor * prev_ids_tensor = nullptr; @@ -1617,6 +1672,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) { } void ggml_backend_sched_reset(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); // reset state for the next run if (!sched->is_reset) { ggml_hash_set_reset(&sched->hash_set); @@ -1628,8 +1684,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) { } bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { + GGML_ASSERT(sched); GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs); + ggml_backend_sched_reset(sched); + ggml_backend_sched_synchronize(sched); ggml_backend_sched_split_graph(sched, measure_graph); @@ -1644,6 +1703,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * } bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + GGML_ASSERT(sched); GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs); GGML_ASSERT(!sched->is_alloc); @@ -1668,6 +1728,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st } enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + GGML_ASSERT(sched); if (!sched->is_reset && !sched->is_alloc) { ggml_backend_sched_reset(sched); } @@ -1682,6 +1743,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch } void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); for (int i = 0; i < sched->n_backends; i++) { ggml_backend_synchronize(sched->backends[i]); } @@ -1694,28 +1756,34 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { } void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { + GGML_ASSERT(sched); sched->callback_eval = callback; sched->callback_eval_user_data = user_data; } int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_splits; } int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_copies; } int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) { + GGML_ASSERT(sched); return sched->n_backends; } ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) { + GGML_ASSERT(sched); GGML_ASSERT(i >= 0 && i < sched->n_backends); return sched->backends[i]; } size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { + GGML_ASSERT(sched); int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); @@ -1723,6 +1791,7 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe } void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { + GGML_ASSERT(sched); int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); tensor_backend_id(node) = backend_index; @@ -1731,6 +1800,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg } ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { + GGML_ASSERT(sched); int backend_index = tensor_backend_id(node); if (backend_index == -1) { return NULL; @@ -1741,6 +1811,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, // utils enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) { + GGML_ASSERT(tensor); GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL); @@ -1752,6 +1823,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) { } enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { + GGML_ASSERT(tensor); GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->data == NULL); GGML_ASSERT(tensor->view_src == NULL); @@ -1825,6 +1897,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_ } struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { + GGML_ASSERT(graph); struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size); struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0])); @@ -1969,6 +2042,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t // CPU backend - buffer static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); uintptr_t data = (uintptr_t)buffer->context; // align the buffer @@ -1980,28 +2054,33 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { } static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + GGML_ASSERT(buffer); ggml_aligned_free(buffer->context, buffer->size); } static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { + GGML_ASSERT(tensor); memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor); memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor); memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { + GGML_ASSERT(src); if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -2012,6 +2091,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con } static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_ASSERT(buffer); memset(buffer->context, value, buffer->size); } diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 8f65904b8fe51..80b9a932db988 100755 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -70,6 +70,8 @@ #include #include #include +#include +#include #include #include @@ -964,8 +966,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { } aclTensor* acl_gamma = get_f32_cache_acl_tensor( ctx, - &ctx.f32_one_cache, - ctx.f32_one_cache_element, + &ctx.rms_norm_one_tensor_cache.cache, + ctx.rms_norm_one_tensor_cache.size, src->ne, acl_gamma_nb, 1, // dims @@ -980,8 +982,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { } aclTensor* acl_rstd = get_f32_cache_acl_tensor( ctx, - &ctx.f32_zero_cache, - ctx.f32_zero_cache_element, + &ctx.rms_norm_zero_tensor_cache.cache, + ctx.rms_norm_zero_tensor_cache.size, src->ne, acl_rstd_nb, GGML_MAX_DIMS, @@ -1257,12 +1259,20 @@ static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) { void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { - GGML_CANN_CALL_ACLNN_OP(ctx, Cos, acl_src, acl_dst); + if(acl_dst == nullptr) { + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceCos, acl_src); + } else { + GGML_CANN_CALL_ACLNN_OP(ctx, Cos, acl_src, acl_dst); + } } void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { - GGML_CANN_CALL_ACLNN_OP(ctx, Sin, acl_src, acl_dst); + if(acl_dst == nullptr) { + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSin, acl_src); + } else { + GGML_CANN_CALL_ACLNN_OP(ctx, Sin, acl_src, acl_dst); + } } void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, @@ -1415,21 +1425,25 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx, * @param start Starting exponent offset. * @param stop Stopping exponent offset (exclusive). * @param step Step size for the exponent increment. + * @param dtype Data type for slope tensor. */ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer, - float m, int64_t size, float start, float stop, float step){ + float m, int64_t size, float start, float stop, float step, ggml_type dtype){ + aclDataType acl_type = ggml_cann_type_mapping(dtype); + size_t type_size = ggml_type_size(dtype); + int64_t ne[] = {size}; - size_t nb[] = {sizeof(float)}; + size_t nb[] = {type_size}; - ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(float)); + ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size); void* arange_buffer = arange_allocator.get(); aclTensor* arange_tensor = ggml_cann_create_tensor( - arange_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1); + arange_buffer, acl_type, type_size, ne, nb, 1); aclnn_arange(ctx, arange_tensor, start, stop, step, size); aclTensor* slope_tensor = ggml_cann_create_tensor( - slope_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1); + slope_buffer, acl_type, type_size, ne, nb, 1); aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT); @@ -1460,10 +1474,11 @@ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_bu * @param n_head Total number of attention heads. * @param slope_buffer Pointer to the output buffer (float array) for storing slopes. * @param max_bias Maximum bias value for slope computation. + * @param dtype Data type for slope tensor. * */ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, - void* slope_buffer, float max_bias) { + void* slope_buffer, float max_bias, ggml_type dtype) { const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); float m0 = powf(2.0f, -(max_bias) / n_head_log2); @@ -1480,7 +1495,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, float step = 1; float count = n_head_log2; // end needs to be +1 because aclnn uses a left-closed, right-open interval. - aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step); + aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype); if (n_head_log2 < n_head) { // arange2 start = 2 * (n_head_log2 - n_head_log2) + 1; @@ -1489,7 +1504,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head, count = n_head - n_head_log2; aclnn_get_slope_inner( ctx, (char *) slope_buffer + n_head_log2 * sizeof(float), - m1, count, start, end + 1, step); + m1, count, start, end + 1, step, dtype); } } @@ -1526,7 +1541,7 @@ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask, ggml_cann_pool_alloc bias_allocator( ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst)); bias_buffer = bias_allocator.get(); - aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias); + aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32); } // broadcast for mask, slop and dst; @@ -1752,10 +1767,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { case GGML_TYPE_F16: { aclTensor* acl_src0 = ggml_cann_create_tensor(src0); ggml_cann_pool_alloc src_buffer_allocator( - ctx.pool(), ggml_nelements(src0) * sizeof(float_t)); + ctx.pool(), ggml_nelements(src0) * sizeof(float)); void* src_trans_buffer = src_buffer_allocator.get(); size_t src_trans_nb[GGML_MAX_DIMS]; - src_trans_nb[0] = sizeof(float_t); + src_trans_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1]; } @@ -1799,14 +1814,14 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // [3,4,5,64] -> [3,4,5,2,32] dequant_ne = weight_ne; - dequant_nb[0] = sizeof(float_t); + dequant_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS + 1; i++) { dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1]; } scale_offset = ggml_nelements(src0) * sizeof(int8_t); ggml_cann_pool_alloc dequant_buffer_allocator( - ctx.pool(), ggml_nelements(src0) * sizeof(float_t)); + ctx.pool(), ggml_nelements(src0) * sizeof(float)); aclTensor* acl_weight_tensor = ggml_cann_create_tensor( src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, @@ -1815,11 +1830,11 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb, GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset); aclTensor* dequant_tensor = ggml_cann_create_tensor( - dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t), + dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float), dequant_ne, dequant_nb, GGML_MAX_DIMS + 1); aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor); - dequant_nb[0] = sizeof(float_t); + dequant_nb[0] = sizeof(float); dequant_ne = src0->ne; for (int i = 1; i < GGML_MAX_DIMS; i++) { dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1]; @@ -2221,9 +2236,41 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, ggml_cann_release_resources(ctx, acl_index, acl_value); } +/** + * @brief Initializes and caches sine/cosine positional encoding values + * (used in RoPE, Rotary Position Embedding) for attention layers. + * + * This function computes and caches the sin/cos values of + * θ = position * theta_scale for RoPE encoding. The cache is shared + * across attention layers, and only the first attention layer will + * trigger initialization. The cache includes repeated sin/cos values + * with different repeat methods depending on the @param is_neox flag. + * + * Steps performed by this function: + * 1. Identify whether the target tensor belongs to Q/K in attention + * and restrict computation to the first layer only. + * 2. Initialize the theta scale array (arange → power → freq scaling). + * 3. Allocate sin/cos caches if the max prompt length increases. + * 4. Compute θ = position * theta_scale. + * 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor. + * 6. Expand sin/cos values by repeat or repeat_interleave depending + * on whether @param is_neox is enabled. + * + * @param ctx The CANN backend context, holding memory pool, + * stream, and persistent buffers for rope init/cache. + * @param dst The destination ggml_tensor whose computation + * depends on the RoPE values (usually Qcur/Kcur). + * @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values. + * @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values. + * @param theta_scale Scalar exponent base for computing theta scale values. + * @param freq_scale Frequency scaling factor, applied to theta scale. + * @param attn_factor Attention scaling factor, applied to sin/cos. + * @param is_neox Whether to use Neox-style repeat strategy + * (dim expansion vs repeat_interleave). + */ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, - aclTensor* acl_cos_repeat_tensor, - aclTensor* acl_sin_repeat_tensor, + void* sin_tensor_buffer, void* cos_tensor_buffer, + float* corr_dims, float ext_factor, float theta_scale, float freq_scale, float attn_factor, bool is_neox) { // int sin/cos cache, cache has different repeat method depond on @@ -2233,12 +2280,10 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1 = dst->src[1]; // position ggml_tensor* src2 = dst->src[2]; // freq_factors - GGML_TENSOR_BINARY_OP_LOCALS - - int64_t theta_scale_length = ne00 / 2; + int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1}; - size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t), - theta_scale_length * sizeof(float_t)}; + size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float), + theta_scale_length * sizeof(float)}; GGML_ASSERT(src1->type == GGML_TYPE_I32); int64_t position_length = src1->ne[0]; @@ -2248,123 +2293,173 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1}; size_t theta_nb[GGML_MAX_DIMS]; - theta_nb[0] = sizeof(float_t); + theta_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; } - bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0); - bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0); - - // used for accuracy testing - bool is_attention = is_q || is_k; - - if(ctx.init_ptr == nullptr || !is_attention) { - // theta_scale arange, [0,1,...,ne00/2 - 1] - if(ctx.init_ptr != nullptr){ - ACL_CHECK(aclrtFree(ctx.init_ptr)); + // theta_scale arange, [0,1,...,ne00/2 - 1] + aclTensor* acl_theta_scale_tensor = nullptr; + // cache theta scale + if (ctx.rope_cache.theta_scale_length != theta_scale_length || + // theta_scale and freq_scale should not change during the current token inference process, + // so we can directly use == here instead of comparing the absolute difference. + ctx.rope_cache.theta_scale != theta_scale || + ctx.rope_cache.freq_scale != freq_scale) { + + ctx.rope_cache.theta_scale_length = theta_scale_length; + ctx.rope_cache.theta_scale = theta_scale; + ctx.rope_cache.freq_scale = freq_scale; + + if (ctx.rope_cache.theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache)); } - ACL_CHECK(aclrtMalloc(&ctx.init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); + ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST)); - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t), + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + float start = 0; float step = 1; - float stop = ne00 / 2; - float n_elements = ne00 / 2; + float stop = theta_scale_length; + float n_elements = theta_scale_length; aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements); + ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool()); + aclTensor* acl_yarn_ramp_tensor = nullptr; + if (ext_factor != 0) { + // -rope_yarn_ramp + // const float y = (i0 / 2 - low) / MAX(0.001f, high - low); + // return MIN(1, MAX(0, y)) - 1; + yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float)); + void* yarn_ramp_buffer = yarn_ramp_allocator.get(); + acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + float zero_value = 0, one_value = 1; + float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]); + aclScalar* low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT); + aclScalar* zero = aclCreateScalar(&zero_value, aclDataType::ACL_FLOAT); + aclScalar* one = aclCreateScalar(&one_value, aclDataType::ACL_FLOAT); + aclScalar* denom_safe = aclCreateScalar(&denom_safe_value, aclDataType::ACL_FLOAT); + aclScalar* ext_factor_sc = aclCreateScalar(&ext_factor, aclDataType::ACL_FLOAT); + + GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor, low, one, acl_yarn_ramp_tensor); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor, denom_safe); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor, zero, zero); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor, one); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor, one, one); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, ext_factor_sc); + + // theta_interp = freq_scale * theta_extrap; + // theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + // theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix; + // theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix; + // theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix); + // + // we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse + // cache freq_scale + (freq_scale - 1) * ramp_mix + float freq_scale_1 = freq_scale - 1; + aclScalar* freq_scale_sc = aclCreateScalar(&freq_scale, aclDataType::ACL_FLOAT); + aclScalar* freq_scale_1_sc = aclCreateScalar(&freq_scale_1, aclDataType::ACL_FLOAT); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, freq_scale_1_sc); + GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor, freq_scale_sc, one); + + ggml_cann_release_resources(ctx, low, zero, one, denom_safe, ext_factor_sc, freq_scale_sc, freq_scale_1_sc); + } + // power aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT); GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor, acl_theta_scale_tensor); - // freq_scale - if (freq_scale != 1) { + if (ext_factor != 0) { + aclnn_mul(ctx, acl_theta_scale_tensor, acl_yarn_ramp_tensor); + } else if (freq_scale != 1) { aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true); } - // freq_factors - if (src2) { - aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( - src2->data, ggml_cann_type_mapping(src2->type), - ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); - aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor); - ggml_cann_release_resources(ctx, acl_freq_factors_tensor); - } - // release - ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale); + ggml_cann_release_resources(ctx, acl_yarn_ramp_tensor, acl_theta_scale); + } else { + // use cache + acl_theta_scale_tensor = + ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); } - if(ctx.sin_ptr == nullptr) { - int64_t theta_length = theta_scale_length * ctx.max_prompt_length; - ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - } - if(position_length > ctx.max_prompt_length) { - ctx.max_prompt_length = position_length; - int64_t theta_length = theta_scale_length * ctx.max_prompt_length; - ACL_CHECK(aclrtFree(ctx.sin_ptr)); - ACL_CHECK(aclrtFree(ctx.cos_ptr)); - ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); - ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST)); + ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool()); + // freq_factors + if (src2) { + freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float)); + void* freq_fac_res_ptr = freq_fac_res_allocator.get(); + aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( + src2->data, ggml_cann_type_mapping(src2->type), + ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor( + freq_fac_res_ptr, ACL_FLOAT, sizeof(float), + theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor); + std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor); + ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor); } - bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0); - - if(is_fisrt_layer || !is_attention) { + // position + aclTensor* acl_position_tensor = ggml_cann_create_tensor( + src1->data, ggml_cann_type_mapping(src1->type), + ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS); + + // power * position + int64_t theta_length = theta_scale_length * position_length; + ggml_cann_pool_alloc theta_allocator(ctx.pool(), + theta_length * sizeof(float)); + void* theta_buffer = theta_allocator.get(); + + aclTensor* acl_theta_tensor = + ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), + theta_ne, theta_nb, GGML_MAX_DIMS); + aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, + acl_theta_tensor); + + // sin/cos + ggml_cann_pool_alloc sin_allocator(ctx.pool(), + theta_length * sizeof(float)); + void* sin_buffer = sin_allocator.get(); + aclTensor* acl_sin_tensor = ggml_cann_create_tensor( + sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, + GGML_MAX_DIMS, ACL_FORMAT_ND); + aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor); - aclTensor* acl_theta_scale_tensor = - ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t), - theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); + ggml_cann_pool_alloc cos_allocator(ctx.pool(), + theta_length * sizeof(float)); + void* cos_buffer = cos_allocator.get(); + aclTensor* acl_cos_tensor = ggml_cann_create_tensor( + cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, + GGML_MAX_DIMS, ACL_FORMAT_ND); + aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor); - // position - aclTensor* acl_position_tensor = ggml_cann_create_tensor( - src1->data, ggml_cann_type_mapping(src1->type), - ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS); - - // power * position - int64_t theta_length = theta_scale_length * position_length; - ggml_cann_pool_alloc theta_allocator(ctx.pool(), - theta_length * sizeof(float_t)); - void* theta_buffer = theta_allocator.get(); - - aclTensor* acl_theta_tensor = - ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t), - theta_ne, theta_nb, GGML_MAX_DIMS); - aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, - acl_theta_tensor); - - // sin/cos - aclTensor* acl_sin_tensor = ggml_cann_create_tensor( - ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, - GGML_MAX_DIMS, ACL_FORMAT_ND); - aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor); - - aclTensor* acl_cos_tensor = ggml_cann_create_tensor( - ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, - GGML_MAX_DIMS, ACL_FORMAT_ND); - aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor); - - // release - ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor, - acl_theta_tensor, acl_sin_tensor, acl_cos_tensor); + if (ext_factor != 0) { + attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale); } - aclTensor* acl_sin_tensor = ggml_cann_create_tensor( - ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, - GGML_MAX_DIMS, ACL_FORMAT_ND); - aclTensor* acl_cos_tensor = ggml_cann_create_tensor( - ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, - GGML_MAX_DIMS, ACL_FORMAT_ND); - // attn_factor if (attn_factor != 1) { aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true); aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true); } + int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; + size_t sin_reshape_nb[GGML_MAX_DIMS]; + sin_reshape_nb[0] = sizeof(float); + for (int i = 1; i < GGML_MAX_DIMS; i++) { + sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; + } + aclTensor* acl_sin_repeat_tensor = + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), + sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); + aclTensor* acl_cos_repeat_tensor = + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), + sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); + // repeat if (is_neox) { int64_t repeatsArray[] = {1, 1, 1, 2}; @@ -2380,8 +2475,9 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, num_repeats, output_size); } - // release - ggml_cann_release_resources(ctx, acl_sin_tensor, acl_cos_tensor); + ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor, + acl_theta_tensor, acl_sin_tensor, acl_sin_repeat_tensor, acl_cos_tensor, + acl_cos_repeat_tensor); } #ifdef __cplusplus @@ -2403,6 +2499,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input + ggml_tensor* src1 = dst->src[1]; // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; @@ -2424,8 +2521,6 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: n_dims <= ne0 GGML_ASSERT(n_dims == ne0); GGML_ASSERT(n_dims % 2 == 0); - // TODO: ext_factor != 0 - GGML_ASSERT(ext_factor == 0); const float theta_scale = powf(freq_base, -2.0f / n_dims); @@ -2435,28 +2530,29 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; - // init cos/sin cache - ggml_cann_pool_alloc sin_allocator( - ctx.pool(), ne00 * ne02 * sizeof(float_t)); - ggml_cann_pool_alloc cos_allocator( - ctx.pool(), ne00 * ne02 * sizeof(float_t)); - void* sin_buffer = sin_allocator.get(); - void* cos_buffer = cos_allocator.get(); + // sin/cos tensor length. + int64_t repeat_theta_length = src0->ne[0] * src1->ne[0]; + ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float)); + void *sin_tensor_buffer = sin_tensor_allocator.get(); + void *cos_tensor_buffer = cos_tensor_allocator.get(); + + // init ctx.rope_cos/rope_sin cache + aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor, + theta_scale, freq_scale, attn_factor, is_neox); int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; - sin_reshape_nb[0] = sizeof(float_t); + sin_reshape_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_reshape_tensor = - ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_reshape_tensor = - ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t), + ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); - aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor, - theta_scale, freq_scale, attn_factor, is_neox); aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); @@ -2470,7 +2566,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void* minus_one_scale_buffer = nullptr; ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0)); ggml_cann_pool_alloc minus_one_scale_allocator( - ctx.pool(), sizeof(float_t) * src0->ne[0]); + ctx.pool(), sizeof(float) * src0->ne[0]); if (!is_neox) { // roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...] input_roll_buffer = roll_allocator.get(); @@ -2500,13 +2596,13 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; - minus_one_nb[0] = sizeof(float_t); + minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( - ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], - minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); + ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], + minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); int64_t dim = 3; int64_t* index = new int64_t[src0->ne[0]]; for (int i = 0; i < src0->ne[0]; i++) { @@ -2534,22 +2630,22 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; - minus_one_nb[0] = sizeof(float_t); + minus_one_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_values( - ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], - minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); + ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0], + minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1); // -1 * first half int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1}; size_t first_half_nb[GGML_MAX_DIMS]; - first_half_nb[0] = sizeof(float_t); + first_half_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1]; } aclTensor* acl_first_half_tensor = ggml_cann_create_tensor( - minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne, + minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne, first_half_nb, GGML_MAX_DIMS); bool inplace = true; float scale = -1; @@ -2589,28 +2685,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: ne0 != n_dims in mode2 } else if (src0->type == GGML_TYPE_F16) { size_t input_fp32_nb[GGML_MAX_DIMS]; - input_fp32_nb[0] = sizeof(float_t); + input_fp32_nb[0] = sizeof(float); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1]; } ggml_cann_pool_alloc fp32_allocator1( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer1 = fp32_allocator1.get(); aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor( - input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne, + input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator2( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); void* input_fp32_buffer2 = fp32_allocator2.get(); aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor( - input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne, + input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator( - ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); + ctx.pool(), ggml_nelements(dst) * sizeof(float)); output_fp32_buffer = fp32_allocator.get(); aclTensor* output_fp32_tensor = ggml_cann_create_tensor( - output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne, + output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1); aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, @@ -2707,8 +2803,6 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds aclIntArray *padding = aclCreateIntArray(paddingVal, 1); int64_t dilationVal[] = {1}; aclIntArray *dilation = aclCreateIntArray(dilationVal, 1); - bool transposed = true; - int64_t groups = 1; int8_t cubeMathType = 0; #ifdef ASCEND_310P @@ -2716,7 +2810,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds #endif GGML_CANN_CALL_ACLNN_OP(ctx, Convolution, acl_input, acl_weight, nullptr, stride, - padding, dilation, transposed, padding, groups, acl_dst, cubeMathType); + padding, dilation, true, padding, 1, acl_dst, cubeMathType); ggml_cann_release_resources(ctx, acl_weight, acl_dst, stride, padding, dilation); } @@ -2825,174 +2919,49 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){ */ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { //dst [M, K, N, 1] - ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] - ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 + ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1] + ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1] ggml_tensor * ids = dst->src[2]; //ids [K, N] - GGML_TENSOR_BINARY_OP_LOCALS - - // copy index from npu to cpu - int64_t n_as = ne02; // A - int64_t n_ids = ids->ne[0]; // K - - std::vector ids_host(ggml_nbytes(ids)); - ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids), - ACL_MEMCPY_DEVICE_TO_HOST); - ACL_CHECK(aclrtSynchronizeStream(ctx.stream())); - - char * src0_original = (char *) src0->data; - char * src1_original = (char *) src1->data; - char * dst_original = (char *) dst->data; - size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03}; - - // src0 is F16, src1 is F32, dst is F32 - ggml_cann_pool_alloc src0_cast_allocator; - if (src0->type == GGML_TYPE_F16) { - src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0)); - void* src0_cast_buf = src0_cast_allocator.get(); - - size_t cast_nb[GGML_MAX_DIMS]; - cast_nb[0] = sizeof(float_t); - for (int i = 1; i < GGML_MAX_DIMS; i++) { - cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1]; - } - - aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0); - aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf, - ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4); - GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast); - ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16); - - src0_original = (char *) src0_cast_buf; - memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb)); - } - -#ifdef ASCEND_310P - ggml_tensor src0_row = *src0; - ggml_tensor src1_row = *src1; - ggml_tensor dst_row = *dst; - - if (src0->type == GGML_TYPE_F16) { - src0_row.type = GGML_TYPE_F32; - } - - // src0_row [D, M, 1, 1] weight without permute - src0_row.ne[2] = 1; - src0_row.ne[3] = 1; - src0_row.nb[0] = ori_src0_nb[0]; - src0_row.nb[1] = ori_src0_nb[1]; - src0_row.nb[2] = ori_src0_nb[1]; - src0_row.nb[3] = ori_src0_nb[1]; - - // src1_row [D, 1, 1, 1] -> input - src1_row.ne[1] = 1; - src1_row.ne[2] = 1; - src1_row.ne[3] = 1; - src1_row.nb[2] = nb11; - src1_row.nb[3] = nb11; - - // dst_row [M, 1, 1, 1] -> out - dst_row.ne[1] = 1; - dst_row.ne[2] = 1; - dst_row.ne[3] = 1; - dst_row.nb[2] = nb1; - dst_row.nb[3] = nb1; - - //create weight for one row - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; + GGML_ASSERT(src0->ne[3] == 1); + GGML_ASSERT(src1->ne[3] == 1); + GGML_ASSERT(dst->ne[3] == 1); - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; + int64_t batch = src1->ne[2]; + GGML_ASSERT(batch == ids->ne[1]); - src0_row.data = src0_tmp_ptr; - src1_row.data = src1_tmp_ptr; - dst_row.data = dst_tmp_ptr; - dst_row.src[0] = &src0_row; - dst_row.src[1] = &src1_row; + ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0)); + void* export_ptr = export_allocator.get(); + for (int64_t i = 0; i < batch; i++) { + aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]); + aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3); - ggml_cann_mul_mat(ctx, &dst_row); + int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]}; + size_t select_export_nb[3]; + select_export_nb[0] = src0->nb[0]; + for (int k = 1;k < 3; k++) { + select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1]; } - } - return; -#endif - - std::vector src0_tensor_vec; - std::vector src1_tensor_vec; - std::vector dst_tensor_vec; - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // src0_row [M, D] -> weight && permute - int64_t src0_ne[2] = {ne01, ne00}; - size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]}; - // src1_row [D, 1] -> input - int64_t src1_ne[2] = {ne10, 1}; - size_t src1_nb[2] = {nb10, nb11}; - // dst_row [M, 1] -> out - int64_t dst_ne[2] = {ne0, 1}; - size_t dst_nb[2] = {nb0, nb1}; - - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; + aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3); + GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export); - int64_t i1 = id; - int64_t i2 = i12; + int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]}; + size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]}; + aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3); - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; + int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]}; + size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]}; + aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]); - aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr, - ACL_FLOAT, sizeof(float), - src0_ne, src0_nb, 2); - aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr, - ACL_FLOAT, sizeof(float), - src1_ne, src1_nb, 2); - aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr, - ACL_FLOAT, sizeof(float), - dst_ne, dst_nb, 2); + int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]}; + size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]}; + aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]); - src0_tensor_vec.push_back(acl_src0); - src1_tensor_vec.push_back(acl_src1); - dst_tensor_vec.push_back(acl_dst); - } - } + GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2); - size_t GROUP_SIZE = 128; - // GroupedMatmulV3 required tensor_list.size < 128 - for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) { - // split and call GroupedMatmulV3 - size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size()); - std::vector src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end); - std::vector src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end); - std::vector dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end); - - aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size()); - aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size()); - aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size()); - - GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list, - nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list); - - ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list); + ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose); } - return; } /** @@ -3141,11 +3110,38 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ - ggml_tensor* src0 = dst->src[0]; // q, fp32 - ggml_tensor* src1 = dst->src[1]; // k, fp16 - ggml_tensor* src2 = dst->src[2]; // v, fp16 + ggml_tensor* src0 = dst->src[0]; // q, fp32 | B, N, S, D (uncont) -> B, S, N, D (cont) + ggml_tensor* src1 = dst->src[1]; // k, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont) + ggml_tensor* src2 = dst->src[2]; // v, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont) ggml_tensor* src3 = dst->src[3]; // mask, fp16 + // B, N, S, D (uncont) -> B, S, N, D (cont) + int64_t src0_bsnd_ne[GGML_MAX_DIMS]; + memcpy(src0_bsnd_ne, src0->ne, GGML_MAX_DIMS * sizeof(int64_t)); + size_t src0_bsnd_nb[GGML_MAX_DIMS]; + memcpy(src0_bsnd_nb, src0->nb, GGML_MAX_DIMS * sizeof(size_t)); + int64_t src1_bsnd_ne[GGML_MAX_DIMS]; + memcpy(src1_bsnd_ne, src1->ne, GGML_MAX_DIMS * sizeof(int64_t)); + size_t src1_bsnd_nb[GGML_MAX_DIMS]; + memcpy(src1_bsnd_nb, src1->nb, GGML_MAX_DIMS * sizeof(size_t)); + int64_t src2_bsnd_ne[GGML_MAX_DIMS]; + memcpy(src2_bsnd_ne, src2->ne, GGML_MAX_DIMS * sizeof(int64_t)); + size_t src2_bsnd_nb[GGML_MAX_DIMS]; + memcpy(src2_bsnd_nb, src2->nb, GGML_MAX_DIMS * sizeof(size_t)); + + auto transpose12 = [](int64_t* ne, size_t* nb) { + int64_t ne_tmp = ne[1]; + size_t nb_tmp = nb[1]; + ne[1] = ne[2]; + nb[1] = nb[2]; + ne[2] = ne_tmp; + nb[2] = nb_tmp; + }; + + transpose12(src0_bsnd_ne, src0_bsnd_nb); + transpose12(src1_bsnd_ne, src1_bsnd_nb); + transpose12(src2_bsnd_ne, src2_bsnd_nb); + float maxBias = 0.0f; float scaleValue = 1.0f; float logitSoftcap = 0.0f; @@ -3167,11 +3163,12 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ void* src0_f16_buffer = nullptr; if(ggml_cann_type_mapping(src0->type) != faDataType){ - aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0); + aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne, + src0_bsnd_nb, GGML_MAX_DIMS); src0_f16_buffer = src0_f16_allocator.alloc( ggml_nelements(src0) * faElemSize); - int64_t* src0_f16_ne = src0->ne; + int64_t* src0_f16_ne = src0_bsnd_ne; size_t src0_f16_nb[GGML_MAX_DIMS]; src0_f16_nb[0] = sizeof(uint16_t); for(int i = 1; i < GGML_MAX_DIMS; ++i){ @@ -3185,20 +3182,23 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType); ggml_cann_release_resources(ctx, acl_src0_f32_tensor); }else{ - acl_src0_f16_tensor = ggml_cann_create_tensor(src0); + acl_src0_f16_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne, + src0_bsnd_nb, GGML_MAX_DIMS); } // Step 2: create the acl tensors for src1 (Key), src2 (Value), // and the direct output from FusedInferAttention - acl_src1_f16_tensor = ggml_cann_create_tensor(src1); - acl_src2_f16_tensor = ggml_cann_create_tensor(src2); + acl_src1_f16_tensor = ggml_cann_create_tensor(src1, src1_bsnd_ne, + src1_bsnd_nb, GGML_MAX_DIMS); + acl_src2_f16_tensor = ggml_cann_create_tensor(src2, src2_bsnd_ne, + src2_bsnd_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc out_f16_allocator(ctx.pool()); void* out_f16_buffer = out_f16_allocator.alloc( ggml_nelements(dst) * faElemSize); - int64_t* out_f16_ne = src0->ne; + int64_t* out_f16_ne = src0_bsnd_ne; size_t out_f16_nb[GGML_MAX_DIMS]; out_f16_nb[0] = faElemSize; for(int i = 1; i < GGML_MAX_DIMS; ++i){ @@ -3212,88 +3212,81 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ // Step 3: create the PSEShift tensor if needed // this tensor is considered as mask (f16) in the llama.cpp - aclTensor* bcast_pse_tensor = nullptr; - int64_t bcast_pse_ne[GGML_MAX_DIMS]; - size_t bcast_pse_nb[GGML_MAX_DIMS]; ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool()); - void* bcast_pse_buffer = nullptr; - if(src3 != nullptr){ - bcast_pse_buffer = bcast_pse_allocator.alloc( - ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t)); - - if(src0->ne[1] > 1){ - // Case 1: broadcast pse for prefill stage with multiple head - aclTensor* acl_mask_f16_tensor = ggml_cann_create_tensor(src3); - bcast_pse_ne[0] = src3->ne[0]; - bcast_pse_ne[1] = src3->ne[1]; - bcast_pse_ne[2] = src0->ne[2]; - bcast_pse_ne[3] = src3->ne[3]; + // Construct the truncated pse tensor (common for prefill/decode) + int64_t trunc_pse_ne[GGML_MAX_DIMS] = { + src3->ne[0], // D + src0->ne[1], // S (number of Q tokens) + src3->ne[2], // mask N + src3->ne[3] // B + }; + size_t* trunc_pse_nb = src3->nb; + + aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor( + src3->data, ACL_FLOAT16, sizeof(uint16_t), + trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS + ); + int64_t bcast_pse_ne[GGML_MAX_DIMS]; + size_t bcast_pse_nb[GGML_MAX_DIMS]; + bcast_pse_ne[0] = src3->ne[0]; // D + bcast_pse_ne[1] = src0->ne[1]; // S + bcast_pse_ne[2] = src0->ne[2]; // N (num_heads) + bcast_pse_ne[3] = src3->ne[3]; // B + if (maxBias == 0.0f) { + // When maxBias == 0.0f, use nb = 0 reduce once repeat (Qwen2) + // Construct the bcast tensor (simulate repeat on the head dimension using stride=0) bcast_pse_nb[0] = sizeof(uint16_t); - for(int i = 1; i < GGML_MAX_DIMS; ++i){ - bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1]; - } + bcast_pse_nb[1] = bcast_pse_nb[0] * bcast_pse_ne[0]; + bcast_pse_nb[2] = 0; // <---- the head dimension shares the same data + bcast_pse_nb[3] = src3->nb[3]; bcast_pse_tensor = ggml_cann_create_tensor( - bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t), - bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS); - - int64_t repeats[] = {1, src0->ne[2], 1, 1}; - aclnn_repeat(ctx, acl_mask_f16_tensor, bcast_pse_tensor, repeats); - - ggml_cann_release_resources(ctx, acl_mask_f16_tensor); - }else{ - // Case 2: trunc the first row and broadcast pse for decode stage with multiple head - int64_t trunc_pse_ne[GGML_MAX_DIMS] = {src3->ne[0], src0->ne[1], src3->ne[2], src3->ne[3]}; - size_t* trunc_pse_nb = src3->nb; - - aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor( src3->data, ACL_FLOAT16, sizeof(uint16_t), - trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS); - - bcast_pse_ne[0] = src3->ne[0]; - bcast_pse_ne[1] = src0->ne[1]; - bcast_pse_ne[2] = src0->ne[2]; - bcast_pse_ne[3] = src3->ne[3]; + bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS + ); + ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor); + } else { bcast_pse_nb[0] = sizeof(uint16_t); - for(int i = 1; i < GGML_MAX_DIMS; ++i){ + for (int i = 1; i < GGML_MAX_DIMS; i++) { bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1]; } + void* bcast_pse_buffer = bcast_pse_allocator.alloc( + ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t) + ); + bcast_pse_tensor = ggml_cann_create_tensor( bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t), - bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS); + bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS + ); int64_t repeats[] = {1, src0->ne[2], 1, 1}; aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats); - ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor); - } - - // Compute the slope if needed. Derived from ggml_cann_softmax(). - if(maxBias != 0.0f){ // alibi + // Compute the slope if needed. Derived from ggml_cann_softmax(). const int64_t n_heads = src0->ne[2]; - ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(float)); + ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t)); void* slope_buffer = slope_allocator.get(); - aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias); + aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16); int64_t slope_ne[] = {1, 1, n_heads, 1}; size_t slope_nb[GGML_MAX_DIMS]; - slope_nb[0] = sizeof(float); + slope_nb[0] = sizeof(uint16_t); for(int i = 1;ine[0]); // 1/sqrt(d) int64_t preTokens = 65535; int64_t nextTokens = 65535; - char layout[5] = {'B', 'N', 'S', 'D', 0}; + char layout[5] = {'B', 'S', 'N', 'D', 0}; int64_t sparseMode = 0; int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2; int64_t blockSize = 0; @@ -3347,32 +3340,9 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){ ); // Step 6: post-processing, permute and cast to f32 - - int64_t new_dim[] = {0, 2, 1, 3}; aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst); - - if(ggml_cann_type_mapping(dst->type) != faDataType){ - ggml_cann_pool_alloc perm_out_f16_allocator(ctx.pool()); - perm_out_f16_allocator.alloc(ggml_nelements(dst) * faElemSize); - void* perm_out_f16_buffer = perm_out_f16_allocator.get(); - - int64_t* perm_out_f16_ne = dst->ne; - size_t perm_out_f16_nb[GGML_MAX_DIMS]; - perm_out_f16_nb[0] = faElemSize; - for(int i = 1; i < GGML_MAX_DIMS; ++i){ - perm_out_f16_nb[i] = perm_out_f16_nb[i - 1] * perm_out_f16_ne[i - 1]; - } - aclTensor* acl_perm_out_f16_tensor = ggml_cann_create_tensor( - perm_out_f16_buffer, faDataType, faElemSize, - perm_out_f16_ne, perm_out_f16_nb, GGML_MAX_DIMS); - aclnn_permute(ctx, acl_dst_f16_tensor, acl_perm_out_f16_tensor, new_dim, GGML_MAX_DIMS); - aclnn_cast(ctx, - acl_perm_out_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type)); - ggml_cann_release_resources(ctx, acl_perm_out_f16_tensor); - }else{ - // only need to permute - aclnn_permute(ctx, acl_dst_f16_tensor, acl_dst_tensor, new_dim, GGML_MAX_DIMS); - } + // TODO: when dst is fp16, don't need cast + aclnn_cast(ctx, acl_dst_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type)); ggml_cann_release_resources(ctx, acl_src0_f16_tensor, acl_src1_f16_tensor, acl_src2_f16_tensor, diff --git a/ggml/src/ggml-cann/common.h b/ggml/src/ggml-cann/common.h index 5858bd3f6a197..a041a157c333a 100755 --- a/ggml/src/ggml-cann/common.h +++ b/ggml/src/ggml-cann/common.h @@ -360,6 +360,30 @@ struct ggml_cann_graph { }; #endif // USE_ACL_GRAPH +struct ggml_cann_rope_cache { + ~ggml_cann_rope_cache() { + if(theta_scale_cache != nullptr) { + ACL_CHECK(aclrtFree(theta_scale_cache)); + } + } + + void* theta_scale_cache = nullptr; + int64_t theta_scale_length = 0; + float theta_scale = 0.0f; + float freq_scale = 0.0f; +}; + +struct ggml_cann_tensor_cache { + ~ggml_cann_tensor_cache() { + if(cache != nullptr) { + ACL_CHECK(aclrtFree(cache)); + } + } + + void* cache = nullptr; + int64_t size = 0; +}; + /** * @brief Context for managing CANN backend operations. */ @@ -368,21 +392,18 @@ struct ggml_backend_cann_context { std::string name; /**< Name of the device. */ std::string description; /**< Description of the device. */ aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */ - void* init_ptr = nullptr; - void* sin_ptr = nullptr; - void* cos_ptr = nullptr; - int64_t max_prompt_length = 65536; #ifdef USE_ACL_GRAPH /// Cached CANN ACL graph used for executing the current ggml computation graph. std::unique_ptr cann_graph; + bool acl_graph_mode = true; #endif cann_task_queue task_queue; bool async_mode; - bool support_set_rows; - void* f32_zero_cache = nullptr; - void* f32_one_cache = nullptr; - int64_t f32_zero_cache_element = 0; - int64_t f32_one_cache_element = 0; + // Rope Cache + ggml_cann_rope_cache rope_cache; + // Constant Pool + ggml_cann_tensor_cache rms_norm_one_tensor_cache; + ggml_cann_tensor_cache rms_norm_zero_tensor_cache; aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */ @@ -398,14 +419,13 @@ struct ggml_backend_cann_context { async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or("")); GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF"); - - support_set_rows = parse_bool(get_env("LLAMA_SET_ROWS").value_or("")); - GGML_LOG_INFO("%s: LLAMA_SET_ROWS is %s\n", __func__, support_set_rows ? "ON" : "OFF"); - - if (!support_set_rows) { - GGML_LOG_INFO("%s: CANN Graph currently only supports execution when LLAMA_SET_ROWS is ON. " - "Falling back to eager mode.\n", __func__); - } +#ifdef USE_ACL_GRAPH + acl_graph_mode = !(parse_bool(get_env("GGML_CANN_DISABLE_ACL_GRAPH").value_or(""))); + GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", + __func__, device, + acl_graph_mode ? "GRAPH" : "EAGER", + acl_graph_mode ? "acl graph enabled" : "acl graph disabled"); +#endif } /** @@ -422,15 +442,6 @@ struct ggml_backend_cann_context { ACL_CHECK(aclrtDestroyStream(streams[i])); } } - if(init_ptr != nullptr) { - ACL_CHECK(aclrtFree(init_ptr)); - } - if(sin_ptr != nullptr) { - ACL_CHECK(aclrtFree(sin_ptr)); - } - if(cos_ptr != nullptr) { - ACL_CHECK(aclrtFree(cos_ptr)); - } } /** diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index cb8af42ebf956..64fb2beff0aef 100755 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -1155,7 +1155,7 @@ namespace { * @note The workspace buffer used in this function is managed globally and reused * across calls. This reduces overhead from repeated memory allocation and deallocation. */ -static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) { +static void weight_format_to_nz(ggml_tensor *tensor, size_t offset) { aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne, tensor->nb, 2, ACL_FORMAT_ND, offset); uint64_t workspaceSize = 0; @@ -1203,7 +1203,7 @@ static void ggml_backend_cann_buffer_set_tensor( if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) { GGML_ASSERT(tensor->ne[2] == 1); GGML_ASSERT(tensor->ne[3] == 1); - weight_format_to_nz(tensor, data, offset); + weight_format_to_nz(tensor, offset); } } else { void *transform_buffer = malloc(size); @@ -2247,12 +2247,12 @@ static enum ggml_status ggml_backend_cann_graph_compute( (ggml_backend_cann_context*)backend->context; ggml_cann_set_device(cann_ctx->device); release_nz_workspace(); + #ifdef USE_ACL_GRAPH bool use_cann_graph = true; bool cann_graph_update_required = false; - // check environment LLAMA_SET_ROWS - if (!cann_ctx->support_set_rows) { + if (!cann_ctx->acl_graph_mode) { use_cann_graph = false; } @@ -2336,7 +2336,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_TYPE_Q8_0: case GGML_TYPE_Q4_0: #ifdef ASCEND_310P - // Q4 && Q8 per group is not suppor on 310p device + // Q4 && Q8 per group is not support on 310p device return false; #endif // only support contiguous for quantized types. @@ -2354,7 +2354,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_TYPE_Q8_0: case GGML_TYPE_Q4_0: #ifdef ASCEND_310P - // Q4 && Q8 per group is not suppor on 310p device + // Q4 && Q8 per group is not support on 310p device return false; #endif // only support contiguous for quantized types. @@ -2405,16 +2405,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } case GGML_OP_ROPE: { // TODO: with ops-test v == 1 - float ext_factor = 0.0f; - memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float)); // TODO: n_dims <= ne0 if (op->src[0]->ne[0] != op->op_params[1]) { return false; } - // TODO: ext_factor != 0 - if (ext_factor != 0) { - return false; - } const int mode = ((const int32_t *) op->op_params)[2]; if (mode & GGML_ROPE_TYPE_MROPE) { @@ -2423,10 +2417,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, if (mode & GGML_ROPE_TYPE_VISION) { return false; } - +#ifdef ASCEND_310P if(!ggml_is_contiguous(op->src[0])){ return false; } +#endif return true; } case GGML_OP_UPSCALE: { @@ -2488,15 +2483,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_OP_ARGMAX: case GGML_OP_COS: case GGML_OP_SIN: - case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_LOG: case GGML_OP_MEAN: case GGML_OP_PAD_REFLECT_1D: case GGML_OP_COUNT_EQUAL: return true; + case GGML_OP_CONV_TRANSPOSE_1D: + // TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255. + return (op->src[0]->ne[0] - 1) <= 255; case GGML_OP_SCALE: float bias; - memcpy(&bias, (float*)op->op_params + 1, sizeof(float)); + memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float)); return bias == 0.0f; // TODO: support bias != 0.0f case GGML_OP_SOFT_MAX: // TODO: support attention sinks [TAG_ATTN_SINKS] @@ -2505,6 +2502,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } return true; case GGML_OP_FLASH_ATTN_EXT:{ +#ifdef ASCEND_310P + // FA not support on 310p device + return false; +#endif // derived from [ggml-cuda.cu] if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){ return false; @@ -2523,15 +2524,12 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, // different head sizes of K and V are not supported yet return false; } - if (op->src[0]->ne[0] == 192) { - return false; - } - if (op->src[0]->ne[0] == 576) { - // DeepSeek MLA + if (op->src[0]->ne[0] % 16 != 0) { + // TODO: padding to support return false; } float logitSoftcap = 0.0f; - memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float)); + memcpy(&logitSoftcap, (const float *)(op->op_params) + 2, sizeof(float)); if(logitSoftcap != 0.0f) { return false; } diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index ce0a3e1285eb0..dd8c1cf67840e 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -433,15 +433,22 @@ function(ggml_add_cpu_backend_variant_impl tag_name) ggml-cpu/arch/riscv/quants.c ggml-cpu/arch/riscv/repack.cpp ) - if (GGML_RVV) - if (GGML_XTHEADVECTOR) - list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d) - elseif (GGML_RV_ZFH) - list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d) - else() - list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d) + set(MARCH_STR "rv64gc") + if (GGML_RV_ZFH) + string(APPEND MARCH_STR "_zfh") + endif() + if (GGML_XTHEADVECTOR) + string(APPEND MARCH_STR "_xtheadvector") + elseif (GGML_RVV) + string(APPEND MARCH_STR "_v") + if (GGML_RV_ZVFH) + string(APPEND MARCH_STR "_zvfh") endif() endif() + if (GGML_RV_ZICBOP) + string(APPEND MARCH_STR "_zicbop") + endif() + list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d) elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") message(STATUS "s390x detected") list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c) @@ -497,9 +504,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name) # Fetch KleidiAI sources: include(FetchContent) - set(KLEIDIAI_COMMIT_TAG "v1.11.0") + set(KLEIDIAI_COMMIT_TAG "v1.13.0") set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz") - set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2") + set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1") if (POLICY CMP0135) cmake_policy(SET CMP0135 NEW) @@ -555,6 +562,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name) list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c + ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c) @@ -576,7 +584,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c - ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c) + ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c + ${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S) set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2") endif() diff --git a/ggml/src/ggml-cpu/arch/riscv/quants.c b/ggml/src/ggml-cpu/arch/riscv/quants.c index 6c74417c90c1f..ee41a3502e82d 100644 --- a/ggml/src/ggml-cpu/arch/riscv/quants.c +++ b/ggml/src/ggml-cpu/arch/riscv/quants.c @@ -1270,29 +1270,40 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); - int tmp, tmp2, sumi; + float ftmp, ft2; + const uint8_t * restrict q40; + const uint8_t * restrict q41; + const uint8_t * restrict q42; + const uint8_t * restrict q43; + const int8_t * restrict q80; + const int8_t * restrict q81; + const int8_t * restrict q82; + const int8_t * restrict q83; + int s0, s1, s2, s3; + __asm__ __volatile__( - "vsetivli zero, 12, e8, m1\n\t" - "vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]} - "vsetivli zero, 4, e32, m1\n\t" + "li %[s1], 8\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vle32.v v1, (%[s6b])\n\t" + "vslide1down.vx v1, v1, zero\n\t" + "vmv.v.x v16, zero\n\t" "vslidedown.vi v2, v1, 2\n\t" "vmv1r.v v3, v2\n\t" "vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]} - "vsetivli zero, 2, e32, m1\n\t" + "vsetivli zero, 2, e32, m1, ta, ma\n\t" "vmv.v.i v4, 4\n\t" "vand.vx v8, v1, %[kmask1]\n\t" "vslide1up.vx v5, v4, zero\n\t" // {0, 4} "vsrl.vi v6, v1, 6\n\t" "vsrl.vv v7, v2, v5\n\t" + "vsse32.v v8, (%[utmp]), %[s1]\n\t" "vand.vx v0, v6, %[kmask3]\n\t" "vand.vx v2, v7, %[kmask2]\n\t" "vsll.vi v6, v0, 4\n\t" - "li %[t2], 8\n\t" - "addi %[t1], %[utmp], 4\n\t" + "addi %[s0], %[utmp], 4\n\t" "vor.vv v1, v6, v2\n\t" - "vsse32.v v8, (%[utmp]), %[t2]\n\t" - "vsse32.v v1, (%[t1]), %[t2]\n\t" - "vsetivli zero, 8, e16, m1\n\t" + "vsse32.v v1, (%[s0]), %[s1]\n\t" + "vsetivli zero, 8, e16, m1, ta, ma\n\t" "vle32.v v2, (%[bsums])\n\t" "vnsrl.wi v0, v2, 0\n\t" "vnsrl.wi v1, v2, 16\n\t" @@ -1300,13 +1311,131 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi "vle8.v v3, (%[mins])\n\t" "vzext.vf2 v4, v3\n\t" "vwmul.vv v6, v4, v2\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vredsum.vs v0, v6, v16\n\t" + "vredsum.vs v0, v7, v0\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfmv.f.s %[ftmp], v0\n\t" + "vsetivli zero, 16, e8, m1, ta, ma\n\t" + "vle8.v v0, (%[xs])\n\t" + "fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t" + "addi %[q40], %[xs], 64\n\t" + "addi %[q41], %[xs], 16\n\t" + "addi %[q42], %[xs], 32\n\t" + "addi %[q43], %[xs], 48\n\t" + "addi %[q80], %[ys], 64\n\t" + "vle8.v v1, (%[q41])\n\t" + "vle8.v v2, (%[q42])\n\t" + "addi %[q81], %[ys], 16\n\t" + "addi %[q41], %[q41], 64\n\t" + "addi %[q82], %[ys], 32\n\t" + "vle8.v v3, (%[q43])\n\t" + "vle8.v v8, (%[ys])\n\t" + "addi %[q42], %[q42], 64\n\t" + "addi %[q83], %[ys], 48\n\t" + "addi %[q43], %[q43], 64\n\t" + "vsrl.vi v4, v0, 4\n\t" + "vle8.v v9, (%[q81])\n\t" + "vle8.v v10, (%[q82])\n\t" + "vand.vi v0, v0, 0xF\n\t" + "addi %[q81], %[q81], 64\n\t" + "vsrl.vi v5, v1, 4\n\t" + "addi %[q82], %[q82], 64\n\t" + "vle8.v v11, (%[q83])\n\t" + "vle8.v v12, (%[q80])\n\t" + "vand.vi v1, v1, 0xF\n\t" + "addi %[q83], %[q83], 64\n\t" + "vsrl.vi v6, v2, 4\n\t" + "addi %[q80], %[q80], 64\n\t" + "vle8.v v13, (%[q81])\n\t" + "vle8.v v14, (%[q82])\n\t" + "vand.vi v2, v2, 0xF\n\t" + "addi %[q81], %[q81], 64\n\t" + "vsrl.vi v7, v3, 4\n\t" + "addi %[q82], %[q82], 64\n\t" + "vwmul.vv v16, v0, v8\n\t" + "vle8.v v15, (%[q83])\n\t" + "vle8.v v0, (%[q40])\n\t" + "vand.vi v3, v3, 0xF\n\t" + "addi %[q83], %[q83], 64\n\t" + "vwmul.vv v24, v2, v12\n\t" + "vwmul.vv v20, v4, v10\n\t" + "vwmul.vv v28, v6, v14\n\t" + "vwmacc.vv v16, v1, v9\n\t" + "vle8.v v1, (%[q41])\n\t" + "vle8.v v2, (%[q42])\n\t" + "vwmacc.vv v24, v3, v13\n\t" + "vwmacc.vv v20, v5, v11\n\t" + "vwmacc.vv v28, v7, v15\n\t" + "addi %[q40], %[q80], 64\n\t" + "addi %[q41], %[q81], 64\n\t" + "vle8.v v3, (%[q43])\n\t" + "vle8.v v8, (%[q80])\n\t" + "addi %[q42], %[q82], 64\n\t" + "addi %[q43], %[q83], 64\n\t" + "vsrl.vi v4, v0, 4\n\t" + "vle8.v v9, (%[q81])\n\t" + "vle8.v v10, (%[q82])\n\t" + "vand.vi v0, v0, 0xF\n\t" + "vsrl.vi v5, v1, 4\n\t" + "vsrl.vi v7, v3, 4\n\t" + "vand.vi v3, v3, 0xF\n\t" + "vle8.v v11, (%[q83])\n\t" + "vle8.v v12, (%[q40])\n\t" + "vand.vi v1, v1, 0xF\n\t" + "vsrl.vi v6, v2, 4\n\t" + "vand.vi v2, v2, 0xF\n\t" + "vwmul.vv v18, v0, v8\n\t" + "vle8.v v13, (%[q41])\n\t" + "vle8.v v14, (%[q42])\n\t" + "vwmul.vv v26, v2, v12\n\t" + "vwmul.vv v22, v4, v10\n\t" + "vwmul.vv v30, v6, v14\n\t" + "vwmacc.vv v18, v1, v9\n\t" + "vle8.v v15, (%[q43])\n\t" + "vwmacc.vv v26, v3, v13\n\t" + "vwmacc.vv v22, v5, v11\n\t" + "vwmacc.vv v30, v7, v15\n\t" "vmv.v.x v0, zero\n\t" - "vsetivli zero, 8, e32, m2\n\t" - "vredsum.vs v0, v6, v0\n\t" - "vmv.x.s %[sumi], v0" - : [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi) - : [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp) - , [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1) + "vsetivli zero, 16, e16, m2, ta, ma\n\t" + "vwredsum.vs v4, v16, v0\n\t" + "lbu %[s0], 0(%[scale])\n\t" + "vwredsum.vs v5, v20, v0\n\t" + "lbu %[s1], 1(%[scale])\n\t" + "vwredsum.vs v6, v24, v0\n\t" + "lbu %[s2], 2(%[scale])\n\t" + "vwredsum.vs v7, v28, v0\n\t" + "lbu %[s3], 3(%[scale])\n\t" + "vwredsum.vs v8, v18, v0\n\t" + "lbu %[q40], 4(%[scale])\n\t" + "vwredsum.vs v9, v22, v0\n\t" + "lbu %[q41], 5(%[scale])\n\t" + "vwredsum.vs v10, v26, v0\n\t" + "lbu %[q42], 6(%[scale])\n\t" + "vwredsum.vs v11, v30, v0\n\t" + "lbu %[q43], 7(%[scale])\n\t" + "vsetivli zero, 4, e32, m1, ta, ma\n\t" + "vmul.vx v0, v4, %[s0]\n\t" + "vmul.vx v1, v8, %[q40]\n\t" + "vmacc.vx v0, %[s1], v5\n\t" + "vmacc.vx v1, %[q41], v9\n\t" + "vmacc.vx v0, %[s2], v6\n\t" + "vmacc.vx v1, %[q42], v10\n\t" + "vmacc.vx v0, %[s3], v7\n\t" + "vmacc.vx v1, %[q43], v11\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfcvt.f.x.v v1, v1\n\t" + "vfmv.f.s %[ft2], v0\n\t" + "vfmv.f.s %[ftmp], v1\n\t" + "fadd.s %[ft2], %[ft2], %[ftmp]\n\t" + "fmadd.s %[sumf], %[d], %[ft2], %[sumf]" + : [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2) + , [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3) + , [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43) + , [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83) + : [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales) + , [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp) + , [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin) , [kmask2] "r" (kmask2), [kmask3] "r" (kmask3) : "memory" , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" @@ -1314,59 +1443,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" ); - sumf -= dmin * sumi; - - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - - sumi = 0; - const uint8_t * scale = scales; - - for (int j = 0; j < QK_K/128; ++j) { - int vl128 = 128, vl64 = 64, vl32 = 32; - __asm__ __volatile__( - "vsetvli zero, %[vl128], e8, m8\n\t" - "vle8.v v8, (%[q8])\n\t" - "vsetvli zero, %[vl64], e8, m4\n\t" - "vle8.v v0, (%[q4])\n\t" - "vsrl.vi v4, v0, 4\n\t" - "vand.vi v0, v0, 0xF\n\t" - "vsetvli zero, %[vl32], e8, m2\n\t" - "vwmul.vv v28, v6, v14\n\t" - "vwmul.vv v20, v4, v10\n\t" - "vwmul.vv v24, v2, v12\n\t" - "vwmul.vv v16, v0, v8\n\t" - "vsetivli zero, 4, e32, m1\n\t" - "vle8.v v2, (%[scale])\n\t" - "vmv.v.x v0, zero\n\t" - "vzext.vf4 v1, v2\n\t" - "vsetvli zero, %[vl32], e16, m4\n\t" - "vwredsum.vs v6, v24, v0\n\t" - "vwredsum.vs v7, v28, v0\n\t" - "vwredsum.vs v4, v16, v0\n\t" - "vwredsum.vs v5, v20, v0\n\t" - "vsetivli zero, 4, e32, m1\n\t" - "vslideup.vi v6, v7, 1\n\t" - "vslideup.vi v4, v5, 1\n\t" - "vslideup.vi v4, v6, 2\n\t" - "vmul.vv v8, v4, v1\n\t" - "vredsum.vs v0, v8, v0\n\t" - "vmv.x.s %[tmp], v0\n\t" - "add %[sumi], %[sumi], %[tmp]" - : [tmp] "=&r" (tmp), [sumi] "+&r" (sumi) - : [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32) - , [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale) - : "memory" - , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" - , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" - , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" - , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" - ); - - q4 += 64; q8 += 128; scale += 4; - } - - sumf += d * sumi; } break; default: @@ -1693,6 +1769,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi case 128: for (int i = 0; i < nb; ++i) { + __builtin_prefetch(&x[i + 1].d, 0, 1); + const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q6 = x[i].ql; @@ -1701,23 +1779,59 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi const int8_t * restrict scale = x[i].scales; - int sum_t = 0; - int t0; + int q6h; + float ftmp; for (int j = 0; j < QK_K/128; ++j) { __asm__ __volatile__( + "addi %[q6h], %[q6], 32\n\t" + "ld t0, 0(%[scale])\n\t" + "addi %[scale], %[scale], 8\n\t" + "slli t6, t0, 1 * 8\n\t" + "lb zero, 0(%[q6])\n\t" + "slli t5, t0, 2 * 8\n\t" + "slli t4, t0, 3 * 8\n\t" + "lb zero, 0(%[q6h])\n\t" + "slli t3, t0, 4 * 8\n\t" + "slli t2, t0, 5 * 8\n\t" + "lb zero, 0(%[qh])\n\t" + "lb zero, 31(%[q6h])\n\t" + "slli t1, t0, 6 * 8\n\t" + "srai a7, t0, 56\n\t" "vsetvli zero, %[vl32], e8, m2\n\t" + "vle8.v v8, (%[q6])\n\t" + "srai t6, t6, 56\n\t" + "srai t5, t5, 56\n\t" + "srai t4, t4, 56\n\t" + "srai t3, t3, 56\n\t" + "vle8.v v10, (%[q6h])\n\t" + "addi %[q6], %[q6], 64\n\t" + "slli t0, t0, 7 * 8\n\t" + "srai t2, t2, 56\n\t" + "srai t1, t1, 56\n\t" + "srai t0, t0, 56\n\t" "vle8.v v4, (%[qh])\n\t" + "vsrl.vi v12, v8, 4\n\t" + "vsrl.vi v14, v10, 4\n\t" + "lb zero, 0(%[q8])\n\t" + "vand.vi v8, v8, 0xF\n\t" + "vand.vi v10, v10, 0xF\n\t" + "lb zero, 32(%[q8])\n\t" "vsll.vi v0, v4, 4\n\t" "vsll.vi v2, v4, 2\n\t" + "lb zero, 64(%[q8])\n\t" "vsrl.vi v6, v4, 2\n\t" - "vsetvli zero, %[vl64], e8, m4\n\t" - "vle8.v v8, (%[q6])\n\t" - "vsrl.vi v12, v8, 4\n\t" - "vand.vi v8, v8, 0xF\n\t" - "vsetvli zero, %[vl128], e8, m8\n\t" "vand.vx v0, v0, %[mask]\n\t" + "lb zero, 96(%[q8])\n\t" + "vand.vx v2, v2, %[mask]\n\t" + "vand.vx v4, v4, %[mask]\n\t" + "vand.vx v6, v6, %[mask]\n\t" "vor.vv v8, v8, v0\n\t" + "lb zero, 127(%[q8])\n\t" + "vor.vv v10, v10, v2\n\t" + "vor.vv v12, v12, v4\n\t" + "vor.vv v14, v14, v6\n\t" + "vsetvli zero, %[vl128], e8, m8\n\t" "vle8.v v0, (%[q8])\n\t" "vsub.vx v8, v8, %[vl32]\n\t" "vsetvli zero, %[vl64], e8, m4\n\t" @@ -1734,34 +1848,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi "vwredsum.vs v13, v28, v0\n\t" "vwredsum.vs v14, v30, v0\n\t" "vsetivli zero, 4, e32, m1\n\t" - "vslideup.vi v10, v9, 1\n\t" - "vslideup.vi v8, v7, 1\n\t" - "vslideup.vi v11, v12, 1\n\t" - "vslideup.vi v13, v14, 1\n\t" - "vslideup.vi v10, v8, 2\n\t" - "vslideup.vi v11, v13, 2\n\t" - "vsetivli zero, 8, e32, m2\n\t" - "vle8.v v2, (%[scale])\n\t" - "vsext.vf4 v4, v2\n\t" - "vmul.vv v2, v4, v10\n\t" - "vredsum.vs v0, v2, v0\n\t" - "vmv.x.s %[t0], v0\n\t" - "add %[sumi], %[sumi], %[t0]" - : [sumi] "+&r" (sum_t), [t0] "=&r" (t0) - : [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale) + "vmul.vx v0, v10, t0\n\t" + "vmul.vx v1, v9, t1\n\t" + "vmacc.vx v0, t2, v8\n\t" + "vmacc.vx v1, t3, v7\n\t" + "vmacc.vx v0, t4, v11\n\t" + "vmacc.vx v1, t5, v12\n\t" + "vmacc.vx v0, t6, v13\n\t" + "vmacc.vx v1, a7, v14\n\t" + "vadd.vv v0, v0, v1\n\t" + "vfcvt.f.x.v v0, v0\n\t" + "vfmv.f.s %[ftmp], v0\n\t" + "fmadd.s %[sumf], %[d], %[ftmp], %[sumf]" + : [q6] "+&r" (q6), [q6h] "=&r" (q6h) + , [scale] "+&r" (scale) + , [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp) + : [qh] "r" (qh), [q8] "r" (q8) , [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128) - , [mask] "r" (0x30) + , [mask] "r" (0x30), [d] "f" (d) : "memory" , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + , "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7" + , "a6", "a5", "a4", "a3" ); - q6 += 64; qh += 32; q8 += 128; scale += 8; + qh += 32; q8 += 128; } - - sumf += d * sum_t; - } break; default: diff --git a/ggml/src/ggml-cpu/ggml-cpu-impl.h b/ggml/src/ggml-cpu/ggml-cpu-impl.h index 1f6844e16cd34..e08c30a348aa1 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-impl.h +++ b/ggml/src/ggml-cpu/ggml-cpu-impl.h @@ -489,7 +489,7 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) { /** * @see https://github.com/ggml-org/llama.cpp/pull/14037 */ -inline float vec_hsum(float32x4_t v) { +inline static float vec_hsum(float32x4_t v) { float32x4_t v_temp = v + vec_reve(v); return v_temp[0] + v_temp[1]; } diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 0d5d3a3440aaf..78ec189d4c646 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -3221,6 +3221,13 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) { uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0); vec_xst(v_y, 0, (ggml_fp16_t *)(y + i)); } +#elif defined(__riscv_zvfh) + for (int vl; i < n; i += vl) { + vl = __riscv_vsetvl_e32m2(n - i); + vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl); + vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl); + __riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl); + } #endif for (; i < n; ++i) { y[i] = GGML_CPU_FP32_TO_FP16(x[i]); diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.cpp b/ggml/src/ggml-cpu/kleidiai/kernels.cpp index ddd29d002d1ca..7ba659124ca27 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kernels.cpp @@ -14,6 +14,7 @@ #include "kai_lhs_pack_bf16p2vlx2_f32_sme.h" #include "kai_lhs_quant_pack_qsi8d32p_f32.h" +#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h" #include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" #include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h" @@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon, + }, /* SME GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, @@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon, @@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, + /* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme, + }, /* SME GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, @@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, @@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, + }, /* DOTPROD GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, @@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + }, /* i8mm GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, @@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + }, /* i8mm GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, @@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, @@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod, }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, + /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, + }, /* DOTPROD GEMV */ /* .kern_info = */ { /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, @@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, /* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod, }, - /* .lhs_info = */ { + /* .gemv_lhs_info = */ { /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32, /* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32, diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.h b/ggml/src/ggml-cpu/kleidiai/kernels.h index bc8f33405d1fe..2ad6ad6fd0bfc 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.h +++ b/ggml/src/ggml-cpu/kleidiai/kernels.h @@ -84,8 +84,11 @@ struct rhs_packing_info { struct ggml_kleidiai_kernels { kernel_info gemm; + lhs_packing_info gemm_lhs_info; + kernel_info gemv; - lhs_packing_info lhs_info; + lhs_packing_info gemv_lhs_info; + rhs_packing_info rhs_info; cpu_feature required_cpu; diff --git a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp index dff8fa244a1c9..7a830448eb3e1 100644 --- a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp @@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { } ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); GGML_ASSERT(kernels); - kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + bool is_gemv = op->src[1]->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; size_t k = op->src[0]->ne[0]; size_t n = op->src[0]->ne[1]; @@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { size_t sr = kernel->get_sr(); if (kernels->rhs_type == GGML_TYPE_Q4_0) { - size = variant_call(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr); + size = variant_call(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr); } else if (kernels->rhs_type == GGML_TYPE_F16) { - size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr) + + size = variant_call(lhs_info->packed_size, m, k, mr, kr, sr) + variant_call(kernels->rhs_info.packed_size, n, k) + k * n * sizeof(float) + n * sizeof(float); } else { @@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); - kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + bool is_gemv = src1->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; GGML_ASSERT(kernel); const int nth = params->nth; @@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits { const int64_t kr = static_cast(kernel->get_kr()); const int64_t sr = static_cast(kernel->get_sr()); - const size_t lhs_packed_size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr); + const size_t lhs_packed_size = variant_call(lhs_info->packed_size, m, k, mr, kr, sr); const size_t rhs_packed_size = variant_call(kernels->rhs_info.packed_size, n, k); const size_t kxn_size = k * n * sizeof(float); const size_t bias_size = n * sizeof(float); @@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits { const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0; const size_t lhs_offset = variant_call(kernels->gemm.get_lhs_offset, m_start, lhs_stride); - const size_t lhs_packed_offset = variant_call(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr); + const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, m_start, k, mr, kr, sr); const void * src_ptr = static_cast(lhs_batch) + lhs_offset; void * dst_ptr = static_cast(lhs_packed) + lhs_packed_offset; - variant_call(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); + variant_call(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); } } @@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits { ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); - kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; - lhs_packing_info * lhs_info = &kernels->lhs_info; + bool is_gemv = src1->ne[1] == 1; + kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info; GGML_ASSERT(kernel); diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp index 2be54c31b5f3e..2c4ad9d58b9f2 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp +++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp @@ -2169,94 +2169,117 @@ class tinyBLAS_Q0_PPC { class tinyBLAS_PPC { public: tinyBLAS_PPC(int64_t k, - const float *A, int64_t lda, - const float *B, int64_t ldb, - float *C, int64_t ldc, + const float * A, int64_t lda, + const float * B, int64_t ldb, + float * C, int64_t ldc, int ith, int nth) : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { } void matmul(int64_t m, int64_t n) { - mnpack(0, m, 0, n); + int64_t mc = 256; int64_t nc = 256; int64_t kc = 256; + if (m % mc == 0 && n % nc == 0 && k % kc == 0) { + matmul_tiled(m, n, mc, nc, kc); + } else { + mnpack(0, m, 0, n); + } } private: - void (tinyBLAS_PPC::*kernel)(int64_t, int64_t); + inline void save_acc(acc_t * ACC, int64_t ii, int64_t jj) { + vec_t vec_C[4]; + __builtin_mma_disassemble_acc(vec_C, ACC); + for (int I = 0; I < 4; I++) { + for (int J = 0; J < 4; J++) { + *((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J); + } + } + } - inline void vector_permute_store_4(vector float *src, float *vecOffset) { - vector float t1, t2, t3, t4, t5, t6, t7, t8; - t1 = vec_mergeh(src[0], src[1]); - t2 = vec_mergeh(src[2], src[3]); - t3 = vec_mergel(src[0], src[1]); - t4 = vec_mergel(src[2], src[3]); + inline void add_save_acc(acc_t * ACC, int64_t ii, int64_t jj) { + vec_t vec_C[4]; + __builtin_mma_disassemble_acc(vec_C, ACC); + for (int I = 0; I < 4; I++) { + for (int J = 0; J < 4; J++) { + float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I); + *c_ptr += *((float *)&vec_C[I]+J); + } + } + } - t5 = vec_xxpermdi(t1, t2, 0); - t6 = vec_xxpermdi(t1, t2, 3); - t7 = vec_xxpermdi(t3, t4, 0); - t8 = vec_xxpermdi(t3, t4, 3); + inline void vector_permute_store_4(vector float * src, float * vecOffset) { + vector float t1, t2, t3, t4, t5, t6, t7, t8; + t1 = vec_mergeh(src[0], src[1]); + t2 = vec_mergeh(src[2], src[3]); + t3 = vec_mergel(src[0], src[1]); + t4 = vec_mergel(src[2], src[3]); - vec_xst(t5, 0, vecOffset); - vec_xst(t6, 0, vecOffset + 4); - vec_xst(t7, 0, vecOffset + 8); - vec_xst(t8, 0, vecOffset + 12); - } + t5 = vec_xxpermdi(t1, t2, 0); + t6 = vec_xxpermdi(t1, t2, 3); + t7 = vec_xxpermdi(t3, t4, 0); + t8 = vec_xxpermdi(t3, t4, 3); - inline void vector_permute_store_8(vector float *src, float *vecOffset) { - vector float t1, t2, t3, t4, t5, t6, t7, t8; - t1 = vec_mergeh(src[0], src[1]); - t2 = vec_mergeh(src[2], src[3]); - t3 = vec_mergeh(src[4], src[5]); - t4 = vec_mergeh(src[6], src[7]); + vec_xst(t5, 0, vecOffset); + vec_xst(t6, 0, vecOffset + 4); + vec_xst(t7, 0, vecOffset + 8); + vec_xst(t8, 0, vecOffset + 12); + } - t5 = vec_xxpermdi(t1, t2, 0); - t6 = vec_xxpermdi(t3, t4, 0); - t7 = vec_xxpermdi(t1, t2, 3); - t8 = vec_xxpermdi(t3, t4, 3); + inline void vector_permute_store_8(vector float * src, float * vecOffset) { + vector float t1, t2, t3, t4, t5, t6, t7, t8; + t1 = vec_mergeh(src[0], src[1]); + t2 = vec_mergeh(src[2], src[3]); + t3 = vec_mergeh(src[4], src[5]); + t4 = vec_mergeh(src[6], src[7]); - vec_xst(t5, 0, vecOffset); - vec_xst(t6, 0, vecOffset + 4); - vec_xst(t7, 0, vecOffset + 8); - vec_xst(t8, 0, vecOffset + 12); + t5 = vec_xxpermdi(t1, t2, 0); + t6 = vec_xxpermdi(t3, t4, 0); + t7 = vec_xxpermdi(t1, t2, 3); + t8 = vec_xxpermdi(t3, t4, 3); - t1 = vec_mergel(src[0], src[1]); - t2 = vec_mergel(src[2], src[3]); - t3 = vec_mergel(src[4], src[5]); - t4 = vec_mergel(src[6], src[7]); + vec_xst(t5, 0, vecOffset); + vec_xst(t6, 0, vecOffset + 4); + vec_xst(t7, 0, vecOffset + 8); + vec_xst(t8, 0, vecOffset + 12); - t5 = vec_xxpermdi(t1, t2, 0); - t6 = vec_xxpermdi(t3, t4, 0); - t7 = vec_xxpermdi(t1, t2, 3); - t8 = vec_xxpermdi(t3, t4, 3); + t1 = vec_mergel(src[0], src[1]); + t2 = vec_mergel(src[2], src[3]); + t3 = vec_mergel(src[4], src[5]); + t4 = vec_mergel(src[6], src[7]); - vec_xst(t5, 0, vecOffset + 16); - vec_xst(t6, 0, vecOffset + 20); - vec_xst(t7, 0, vecOffset + 24); - vec_xst(t8, 0, vecOffset + 28); + t5 = vec_xxpermdi(t1, t2, 0); + t6 = vec_xxpermdi(t3, t4, 0); + t7 = vec_xxpermdi(t1, t2, 3); + t8 = vec_xxpermdi(t3, t4, 3); + + vec_xst(t5, 0, vecOffset + 16); + vec_xst(t6, 0, vecOffset + 20); + vec_xst(t7, 0, vecOffset + 24); + vec_xst(t8, 0, vecOffset + 28); } - void packTranspose(const float* a, int64_t lda, int rows, int cols, float* vec) { + void packTranspose(const float * a, int64_t lda, int rows, int cols, float * vec) { int64_t i, j; float * aoffsets[8]; - float *aoffset = NULL, *boffset = NULL; + float * aoffset = NULL, * boffset = NULL; __vector_pair arr[8]; vector float c[8][2] = {0}; vector float c1[8] = {0}; vector float c2[8] = {0}; - aoffset = const_cast(a); + aoffset = const_cast(a); boffset = vec; j = (rows >> 3); if (j > 0) { - do { aoffsets[0] = aoffset; - for (int it = 1; it< 8; it++) + for (int it = 1; it < 8; it++) aoffsets[it] = aoffsets[it-1] + lda; aoffset += 8 * lda; i = (cols >> 3); if (i > 0) { do { - for (int it = 0; it< 8; it++) { + for (int it = 0; it < 8; it++) { arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]); __builtin_vsx_disassemble_pair(c[it], &arr[it]); c1[it] = c[it][0]; @@ -2264,11 +2287,14 @@ class tinyBLAS_PPC { } vector_permute_store_8(c1, boffset); - vector_permute_store_8(c2, boffset+32); - for (int it = 0; it < 4; it++) - aoffsets[it] = aoffsets[it] + 8*lda; + vector_permute_store_8(c2, boffset + 32); boffset += 64; i--; + if (i > 0) { + for (int it = 0; it < 8; it++) { + aoffsets[it] = aoffsets[it] + 8; + } + } } while(i > 0); } if (cols & 4) { @@ -2295,9 +2321,9 @@ class tinyBLAS_PPC { c2[it] = c[it][1]; } vector_permute_store_4(c1, boffset); - vector_permute_store_4(c2, boffset+16); + vector_permute_store_4(c2, boffset + 16); for (int it = 0; it < 4; it++) - aoffsets[it] += 8*lda; + aoffsets[it] += 8 * lda; boffset += 32; i--; } while(i > 0); @@ -2325,15 +2351,15 @@ class tinyBLAS_PPC { vec_t vec_A[4], vec_B[4], vec_C[4]; acc_t acc_0; __builtin_mma_xxsetaccz(&acc_0); - for (int l = 0; l < k; l+=4) { - packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A); - packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B); + for (int l = 0; l < k; l += 4) { + packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A); + packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B); __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]); } - SAVE_ACC(&acc_0, ii, jj); + save_acc(&acc_0, ii, jj); } void KERNEL_4x8(int64_t ii, int64_t jj) { @@ -2341,9 +2367,9 @@ class tinyBLAS_PPC { acc_t acc_0, acc_1; __builtin_mma_xxsetaccz(&acc_0); __builtin_mma_xxsetaccz(&acc_1); - for (int64_t l = 0; l < k; l+=4) { - packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A); - packTranspose(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B); + for (int64_t l = 0; l < k; l += 4) { + packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A); + packTranspose(B + (jj * ldb) + l, ldb, 8, 4, (float *)vec_B); __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]); __builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]); @@ -2353,8 +2379,8 @@ class tinyBLAS_PPC { __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]); __builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]); } - SAVE_ACC(&acc_0, ii, jj); - SAVE_ACC(&acc_1, ii, jj+4); + save_acc(&acc_0, ii, jj); + save_acc(&acc_1, ii, jj + 4); } void KERNEL_8x4(int64_t ii, int64_t jj) { @@ -2362,9 +2388,9 @@ class tinyBLAS_PPC { acc_t acc_0, acc_1; __builtin_mma_xxsetaccz(&acc_0); __builtin_mma_xxsetaccz(&acc_1); - for (int64_t l = 0; l < k; l+=4) { - packTranspose(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A); - packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B); + for (int64_t l = 0; l < k; l += 4) { + packTranspose(A + (ii * lda) + l, lda, 8, 4, (float *)vec_A); + packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B); __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]); @@ -2374,8 +2400,8 @@ class tinyBLAS_PPC { __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]); __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]); } - SAVE_ACC(&acc_0, ii, jj); - SAVE_ACC(&acc_1, ii+4, jj); + save_acc(&acc_0, ii, jj); + save_acc(&acc_1, ii + 4, jj); } void KERNEL_8x8(int64_t ii, int64_t jj) { @@ -2386,19 +2412,96 @@ class tinyBLAS_PPC { __builtin_mma_xxsetaccz(&acc_2); __builtin_mma_xxsetaccz(&acc_3); for (int l = 0; l < k; l+=8) { - packTranspose(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A); - packTranspose(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B); + packTranspose(A + (ii * lda) + l, lda, 8, 8, (float *)vec_A); + packTranspose(B + (jj * ldb) + l, ldb, 8, 8, (float *)vec_B); for(int x = 0; x < 16; x+=2) { __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]); - __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]); - __builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]); - __builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]); + __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x + 1]); + __builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x + 1], vec_B[x]); + __builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x + 1], vec_B[x + 1]); + } + } + save_acc(&acc_0, ii, jj); + save_acc(&acc_1, ii, jj + 4); + save_acc(&acc_2, ii + 4, jj); + save_acc(&acc_3, ii + 4, jj + 4); + } + + inline void MMA_16x8(vec_t * vec_A0, vec_t * vec_A1, vec_t * vec_B, acc_t * acc) { + for (int x = 0; x < 16; x += 2) { + __builtin_mma_xvf32gerpp(&acc[0], vec_A0[x + 0], vec_B[x]); + __builtin_mma_xvf32gerpp(&acc[1], vec_A0[x + 0], vec_B[x + 1]); + __builtin_mma_xvf32gerpp(&acc[2], vec_A0[x + 1], vec_B[x]); + __builtin_mma_xvf32gerpp(&acc[3], vec_A0[x + 1], vec_B[x + 1]); + __builtin_mma_xvf32gerpp(&acc[4], vec_A1[x + 0], vec_B[x]); + __builtin_mma_xvf32gerpp(&acc[5], vec_A1[x + 0], vec_B[x + 1]); + __builtin_mma_xvf32gerpp(&acc[6], vec_A1[x + 1], vec_B[x]); + __builtin_mma_xvf32gerpp(&acc[7], vec_A1[x + 1], vec_B[x + 1]); + } + } + + void KERNEL(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, vec_t * vec_A, vec_t * vec_B, int64_t kk) { + for (int64_t i = 0; i < mc; i += 16) { + int A_base_addr = (mc / 8) * (i / 8) * 16; + for (int64_t j = 0; j < nc; j += 8) { + int B_base_addr = (nc / 8) * (j / 8) * 16; + acc_t acc[8]; + vec_t A0_block[16]; vec_t A1_block[16]; + for (int x = 0; x < 8; x++) + __builtin_mma_xxsetaccz(&acc[x]); + for (int64_t l = 0; l < kc; l += 8) { + int A0_block_idx = A_base_addr + (l / 8) * 16; + int A1_block_idx = A0_block_idx + (mc / 8) * 16; + int B_block_idx = B_base_addr + (l / 8) * 16; + vec_t* A0_block = &vec_A[A0_block_idx]; + vec_t* A1_block = &vec_A[A1_block_idx]; + vec_t* B_block = &vec_B[B_block_idx]; + MMA_16x8(A0_block, A1_block, B_block, acc); + } + if (kk == 0) { + save_acc(&acc[0], ii + i, jj + j); + save_acc(&acc[1], ii + i, jj + j + 4); + save_acc(&acc[2], ii + i + 4, jj + j); + save_acc(&acc[3], ii + i + 4, jj + j + 4); + save_acc(&acc[4], ii + i + 8, jj + j); + save_acc(&acc[5], ii + i + 8, jj + j + 4); + save_acc(&acc[6], ii + i + 12, jj + j); + save_acc(&acc[7], ii + i + 12, jj + j + 4); + } else { + add_save_acc(&acc[0], ii + i, jj + j); + add_save_acc(&acc[1], ii + i, jj + j + 4); + add_save_acc(&acc[2], ii + i + 4, jj + j); + add_save_acc(&acc[3], ii + i + 4, jj + j + 4); + add_save_acc(&acc[4], ii + i + 8, jj + j); + add_save_acc(&acc[5], ii + i + 8, jj + j + 4); + add_save_acc(&acc[6], ii + i + 12, jj + j); + add_save_acc(&acc[7], ii + i + 12, jj + j + 4); + } + } + } + } + + void matmul_tiled(int64_t m , int64_t n, int64_t mc, int64_t nc, int64_t kc) { + int64_t ytiles = m / mc; + int64_t xtiles = n / nc; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + if (end > tiles) { + end = tiles; + } + for (int64_t job = start; job < end; ++job) { + int64_t ii = (job / xtiles) * mc; + int64_t jj = (job % xtiles) * nc; + for (int64_t kk = 0; kk < k; kk += kc) { + vec_t A_pack[kc * mc / 4]; + vec_t B_pack[kc * nc / 4]; + packTranspose(A + (ii * lda) + kk, lda, kc, mc, (float *)A_pack); + packTranspose(B + (jj * ldb) + kk, ldb, kc, nc, (float *)B_pack); + KERNEL(ii, jj, mc, nc, kc, A_pack, B_pack, kk); } } - SAVE_ACC(&acc_0, ii, jj); - SAVE_ACC(&acc_1, ii, jj+4); - SAVE_ACC(&acc_2, ii+4, jj); - SAVE_ACC(&acc_3, ii+4, jj+4); } void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { @@ -2406,35 +2509,35 @@ class tinyBLAS_PPC { int n_rem = MIN(n - n0, 8); int mc = 0, nc = 0; if (m_rem >= 8 && n_rem >= 8) { - mc = 8; - nc = 8; - gemm<8, 8>(m0, m, n0, n); + mc = 8; + nc = 8; + gemm<8, 8>(m0, m, n0, n); } else if (m_rem >= 4 && n_rem >= 8) { - mc = 4; - nc = 8; - gemm<4, 8>(m0, m, n0, n); + mc = 4; + nc = 8; + gemm<4, 8>(m0, m, n0, n); } else if (m_rem >= 8 && n_rem >= 4) { - mc = 8; - nc = 4; - gemm<8, 4>(m0, m, n0, n); + mc = 8; + nc = 4; + gemm<8, 4>(m0, m, n0, n); } else if (m_rem >= 4 && n_rem >= 4) { - mc = 4; - nc = 4; - gemm<4, 4>(m0, m, n0, n); + mc = 4; + nc = 4; + gemm<4, 4>(m0, m, n0, n); } else { mc = (m_rem >= 4) ? 4 : m_rem; nc = (n_rem >= 4) ? 4 : n_rem; if (mc == 0 || nc == 0) - return; + return; gemm_small(m0, m, n0, n, mc, nc); } int64_t mp = m0 + ((m - m0) / mc) * mc; int64_t np = n0 + ((n - n0) / nc) * nc; mnpack(mp, m, n0, np); mnpack(m0, m, np, n); - } + } - void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) { + void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) { int64_t ytiles = (m - m0) / RM; int64_t xtiles = (n - n0) / RN; int64_t tiles = xtiles * ytiles; @@ -2449,30 +2552,30 @@ class tinyBLAS_PPC { vec_t vec_C[4]; acc_t acc_0; __builtin_mma_xxsetaccz(&acc_0); - vec_t vec_A[4] {0}, vec_B[4] = {0}; - for (int l=0; l(A+(ii)*lda+l); - packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B); + float * a = const_cast(A + (ii) * lda + l); + packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B); vec_A[0] = (vec_t)vec_xl(0,a); - vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1)); - vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2)); - vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3)); + vec_A[1] = (vec_t)vec_splats(*((float *)&vec_A+1)); + vec_A[2] = (vec_t)vec_splats(*((float *)&vec_A+2)); + vec_A[3] = (vec_t)vec_splats(*((float *)&vec_A+3)); } else if (RN == 1) { - packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A); - float* b = const_cast(B+(jj)*ldb+l); + packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A); + float * b = const_cast(B + (jj) * ldb + l); vec_B[0] = (vec_t)vec_xl(0,b); - vec_B[1] = (vec_t)vec_splats(*((float*)&vec_B+1)); - vec_B[2] = (vec_t)vec_splats(*((float*)&vec_B+2)); - vec_B[3] = (vec_t)vec_splats(*((float*)&vec_B+3)); + vec_B[1] = (vec_t)vec_splats(*((float *)&vec_B+1)); + vec_B[2] = (vec_t)vec_splats(*((float *)&vec_B+2)); + vec_B[3] = (vec_t)vec_splats(*((float *)&vec_B+3)); } else { - packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A); - packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B); + packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A); + packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B); } __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); @@ -2482,12 +2585,27 @@ class tinyBLAS_PPC { __builtin_mma_disassemble_acc(vec_C, &acc_0); for (int I = 0; I < RM; I++) { for (int J = 0; J < RN; J++) { - *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); + *((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J); } } } } + template + inline void kernel(int64_t ii, int64_t jj) { + if constexpr(RM == 4 && RN == 4) { + KERNEL_4x4(ii, jj); + } else if constexpr(RM == 4 && RN == 8) { + KERNEL_4x8(ii, jj); + } else if constexpr(RM == 8 && RN == 4) { + KERNEL_8x4(ii, jj); + } else if constexpr(RM == 8 && RN == 8) { + KERNEL_8x8(ii, jj); + } else { + static_assert(false, "RN/RM values not supported"); + } + } + template NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { int64_t ytiles = (m - m0) / RM; @@ -2496,27 +2614,18 @@ class tinyBLAS_PPC { int64_t duty = (tiles + nth - 1) / nth; int64_t start = duty * ith; int64_t end = start + duty; - if (RM == 4 && RN == 4) { - kernel = &tinyBLAS_PPC::KERNEL_4x4; - } else if (RM == 4 && RN == 8) { - kernel = &tinyBLAS_PPC::KERNEL_4x8; - } else if (RM == 8 && RN == 4) { - kernel = &tinyBLAS_PPC::KERNEL_8x4; - } else if (RM == 8 && RN == 8) { - kernel = &tinyBLAS_PPC::KERNEL_8x8; - } if (end > tiles) end = tiles; for (int64_t job = start; job < end; ++job) { int64_t ii = m0 + job / xtiles * RM; int64_t jj = n0 + job % xtiles * RN; - (this->*kernel)(ii, jj); + kernel(ii, jj); } } - const float *const A; - const float *const B; - float *C; + const float * const A; + const float * const B; + float * C; const int64_t k; const int64_t lda; const int64_t ldb; diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp index 460367cca09e9..8c1f7948855ac 100644 --- a/ggml/src/ggml-cpu/ops.cpp +++ b/ggml/src/ggml-cpu/ops.cpp @@ -9003,8 +9003,7 @@ static void ggml_compute_forward_ssm_scan_f32( GGML_ASSERT(src4->nb[0] == sizeof(float)); GGML_ASSERT(src5->nb[0] == sizeof(float)); GGML_ASSERT(src6->nb[0] == sizeof(int32_t)); - // allows optimizing the modulo since n_group should be a power of 2 - GGML_ASSERT((ng & -ng) == ng); + GGML_ASSERT(nh % ng == 0); // heads per thread const int dh = (nh + nth - 1)/nth; @@ -9035,6 +9034,7 @@ static void ggml_compute_forward_ssm_scan_f32( // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16 const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h]; const float dA = expf(dt_soft_plus * A[h]); + const int g = h / (nh / ng); // repeat_interleave // dim for (int i1 = 0; i1 < nr; ++i1) { @@ -9057,8 +9057,8 @@ static void ggml_compute_forward_ssm_scan_f32( // TODO: maybe unroll more? for (int j = 0; j < 1; j++) { GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc); - GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc); - GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc); + GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc); + GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc); t0 = GGML_F32_VEC_MUL(t0, adA); t1 = GGML_F32_VEC_MUL(t1, axdt); @@ -9072,6 +9072,9 @@ static void ggml_compute_forward_ssm_scan_f32( } sumf = GGML_F32xt_REDUCE_ONE(sum); + #elif defined(__riscv_v_intrinsic) + // todo: RVV implementation + const int np = 0; #else const int np = (nc & ~(GGML_F32_STEP - 1)); @@ -9087,8 +9090,8 @@ static void ggml_compute_forward_ssm_scan_f32( for (int i = 0; i < np; i += GGML_F32_STEP) { for (int j = 0; j < GGML_F32_ARR; j++) { ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc); - ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc); - az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc); + ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc); + az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc); ax[j] = GGML_F32_VEC_MUL(ax[j], adA); ay[j] = GGML_F32_VEC_MUL(ay[j], axdt); @@ -9110,7 +9113,7 @@ static void ggml_compute_forward_ssm_scan_f32( // d_state for (int i0 = np; i0 < nc; ++i0) { const int i = i0 + ii*nc; - const int ig = i0 + (h & (ng - 1))*nc; + const int ig = i0 + g*nc; // state = prev_state * dA + dB * x const float state = (s0[i] * dA) + (B[ig] * x_dt); // y = rowwise_dotprod(state, C) @@ -9127,6 +9130,7 @@ static void ggml_compute_forward_ssm_scan_f32( for (int h = ih0; h < ih1; ++h) { // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16 const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h]; + const int g = h / (nh / ng); // repeat_interleave // dim for (int i1 = 0; i1 < nr; ++i1) { @@ -9141,8 +9145,8 @@ static void ggml_compute_forward_ssm_scan_f32( // TODO: what happens when (d_state % svcntw()) != 0? for (int64_t k = 0; k < nc; k += svcntw()) { svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]); - svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]); - svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]); + svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]); + svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]); svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]); svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA); @@ -9162,7 +9166,7 @@ static void ggml_compute_forward_ssm_scan_f32( // d_state for (int i0 = 0; i0 < nc; ++i0) { const int i = i0 + ii*nc; - const int ig = i0 + (h & (ng - 1))*nc; + const int ig = i0 + g*nc; // state = prev_state * dA + dB * x const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt); // y = rowwise_dotprod(state, C) @@ -10023,8 +10027,8 @@ static void ggml_compute_forward_rwkv_wkv7_f32( int64_t h_stride_2d = head_size * head_size; #if defined(GGML_SIMD) - #if defined(__ARM_FEATURE_SVE) - // scalar Route to scalar implementation //TODO: Write SVE code + #if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic) + // scalar Route to scalar implementation //TODO: Write SVE code and RVV code for (int64_t t = 0; t < T; t++) { int64_t t_offset = t * t_stride; int64_t state_offset = head_size * C * (t / (T / n_seqs)); diff --git a/ggml/src/ggml-cpu/simd-mappings.h b/ggml/src/ggml-cpu/simd-mappings.h index b4ad68c9fd647..8bd56bdac1b43 100644 --- a/ggml/src/ggml-cpu/simd-mappings.h +++ b/ggml/src/ggml-cpu/simd-mappings.h @@ -18,6 +18,10 @@ #include #endif +#if defined(__riscv_v_intrinsic) +#include +#endif + #ifdef __cplusplus extern "C" { #endif @@ -94,24 +98,15 @@ extern "C" { } #elif defined(__riscv) && defined(__riscv_zfhmin) static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) { - float f; - __asm__( - "fmv.h.x %[f], %[h]\n\t" - "fcvt.s.h %[f], %[f]" - : [f] "=&f" (f) - : [h] "r" (h) - ); - return f; + _Float16 hf; + memcpy(&hf, &h, sizeof(ggml_fp16_t)); + return hf; } static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) { ggml_fp16_t res; - __asm__( - "fcvt.h.s %[f], %[f]\n\t" - "fmv.x.h %[h], %[f]" - : [h] "=&r" (res) - : [f] "f" (f) - ); + _Float16 hf = (_Float16)f; + memcpy(&res, &hf, sizeof(ggml_fp16_t)); return res; } @@ -220,6 +215,47 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { #define GGML_F32_VEC_MUL GGML_F32xt_MUL #define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE +// F16 SVE +#define DEFAULT_PG32 svptrue_b32() +#define DEFAULT_PG16 svptrue_b16() + +#define GGML_F32Cxt svfloat16_t +#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f) +#define GGML_F32Cxt_SET1(x) svdup_n_f16(x) +#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p)) +#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec)) + +#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a) +#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b) +#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b) +#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__) +#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED + +#define GGML_F16x_VEC GGML_F32Cxt +#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO +#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1 +#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p) +#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r) +#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA +#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD +#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL +#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE + +#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a) +#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__) + +#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \ +{ \ + sum1 = svadd_f16_x(pg16, sum1, sum2); \ + sum3 = svadd_f16_x(pg16, sum3, sum4); \ + sum1 = svadd_f16_x(pg16, sum1, sum3); \ + __fp16 sum_f16 = svaddv_f16(pg16, sum1); \ + (res) = (ggml_float) sum_f16; \ +} +#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__) + // F16 NEON #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) @@ -1170,6 +1206,36 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) { #define GGML_F16_VEC_MUL GGML_F32x4_MUL #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE +#elif defined(__riscv_v_intrinsic) + +// compatible with vlen >= 128 + +#define GGML_SIMD + +// F32 + +#define GGML_F32_STEP 16 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 vfloat32m1_t +#define GGML_F32x4_ZERO __riscv_vfmv_v_f_f32m1(0.0f, GGML_F32_EPR) +#define GGML_F32x4_SET1(x) __riscv_vfmv_v_f_f32m1(x, GGML_F32_EPR) +#define GGML_F32x4_LOAD(x) __riscv_vle32_v_f32m1(x, GGML_F32_EPR) +#define GGML_F32x4_STORE(b, v) __riscv_vse32_v_f32m1(b, v, GGML_F32_EPR) +#define GGML_F32x4_FMA(a, b, c) __riscv_vfmacc_vv_f32m1(a, b, c, GGML_F32_EPR) +#define GGML_F32x4_ADD(a, b) __riscv_vfadd_vv_f32m1(a, b, GGML_F32_EPR) +#define GGML_F32x4_MUL(a, b) __riscv_vfmul_vv_f32m1(a, b, GGML_F32_EPR) + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + #endif // GGML_F32_ARR / GGML_F16_ARR diff --git a/ggml/src/ggml-cpu/vec.cpp b/ggml/src/ggml-cpu/vec.cpp index 07b377bdd82a7..437192d525a34 100644 --- a/ggml/src/ggml-cpu/vec.cpp +++ b/ggml/src/ggml-cpu/vec.cpp @@ -84,6 +84,22 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G } // reduce sum1,sum2 to sum1 GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8); + #elif defined(__riscv_v_intrinsic) + int vl = __riscv_vsetvlmax_e32m8(); + vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1); + vfloat32m8_t vsum; + vfloat32m8_t ax; + vfloat32m8_t ay; + vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl); + for (int i = 0; i < n; i += vl) { + vl = __riscv_vsetvl_e32m8(n - i); + ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl); + ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl); + vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl); + } + vl = __riscv_vsetvlmax_e32m8(); + vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl); + sumf += __riscv_vfmv_f_s_f32m1_f32(vs); #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -197,38 +213,125 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G ggml_float sumf = 0.0; -#if defined(GGML_SIMD) - const int np = (n & ~(GGML_F16_STEP - 1)); - GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; +#if defined(GGML_SIMD) + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; //get vector length + const int ggml_f16_epr = sve_register_length / 16; // running when 16 + const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers + + const int np= (n & ~(ggml_f16_step - 1)); + svfloat16_t sum1 = svdup_n_f16(0.0f); + svfloat16_t sum2 = svdup_n_f16(0.0f); + svfloat16_t sum3 = svdup_n_f16(0.0f); + svfloat16_t sum4 = svdup_n_f16(0.0f); + + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + for (int i = 0; i < np; i += ggml_f16_step) { + ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); + sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1); + + ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); + sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2); + + ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3); + + ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4); + + ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5); + + ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6); + + ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7); + + ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8); + } - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8 + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0); + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); + sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry); + } - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); - sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + sum1 = svmad_f16_x(pg, hx, hy, sum1); } - } + GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4); + #elif defined(__riscv_v_intrinsic) + #if defined(__riscv_zvfh) + int vl = __riscv_vsetvlmax_e32m2(); + vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1); + vfloat32m2_t vsum; + vfloat16m1_t ax; + vfloat16m1_t ay; + vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl)); + for (int i = 0; i < n; i += vl) { + vl = __riscv_vsetvl_e16m1(n - i); + ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl); + ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl); + vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl); + } + vl = __riscv_vsetvlmax_e32m1(); + vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl); + vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl); + sumf += __riscv_vfmv_f_s_f32m1_f32(vs); + #else + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + #endif // __riscv_zvfh + #else + const int np = (n & ~(GGML_F16_STEP - 1)); - // reduce sum0..sum3 to sum0 - GGML_F16_VEC_REDUCE(sumf, sum); + GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; - // leftovers - for (int i = np; i < n; ++i) { - sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); - } + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - // if you hit this, you are likely running outside the FP range - assert(!isnan(sumf) && !isinf(sumf)); + sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F16_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + // if you hit this, you are likely running outside the FP range + assert(!isnan(sumf) && !isinf(sumf)); + #endif #else for (int i = 0; i < n; ++i) { sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i])); } -#endif +#endif // GGML_SIMD *s = sumf; } @@ -247,6 +350,12 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) { for (; i + 3 < n; i += 4) { _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i))); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i))); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i))); @@ -271,10 +380,24 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * for (; i + 3 < n; i += 4) { _mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i))); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i))); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i))); } +#elif defined(__riscv_v_intrinsic) + for (int vl; i < n; i += vl) { + vl = __riscv_vsetvl_e32m2(n - i); + vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl); + vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl); + vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl); + __riscv_vse32_v_f32m2(&y[i], vy, vl); + } #endif for (; i < n; ++i) { y[i] = ggml_silu_f32(x[i]) * g[i]; @@ -318,6 +441,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float #endif sum += (ggml_float)_mm_cvtss_f32(val); } +#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + const int vlen = svcntw(); + for (; i < n; i += vlen) { + const svbool_t pg = svwhilelt_b32_s32(i, n); + svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i), + svdup_n_f32_x(pg, max))); + svst1_f32(pg, y + i, val); + sum += (ggml_float)svaddv_f32(pg, val); + } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i), @@ -325,6 +457,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float vst1q_f32(y + i, val); sum += (ggml_float)vaddvq_f32(val); } +#elif defined(__riscv_v_intrinsic) + vfloat64m1_t vsum = __riscv_vfmv_v_f_f64m1(0, 1); + for (int avl; i < n; i += avl) { + avl = __riscv_vsetvl_e32m2(n - i); + vfloat32m2_t val = ggml_v_expf_m2(__riscv_vfsub_vf_f32m2(__riscv_vle32_v_f32m2(&x[i], avl), max, avl), avl); + __riscv_vse32_v_f32m2(&y[i], val, avl); + vsum = __riscv_vfwredusum_vs_f32m2_f64m1(val, vsum, avl); + } + return (ggml_float)__riscv_vfmv_f_s_f64m1_f64(vsum); #endif for (; i < n; ++i) { float val = expf(x[i] - max); diff --git a/ggml/src/ggml-cpu/vec.h b/ggml/src/ggml-cpu/vec.h index 2250d93cb00d1..ef334d089d1f7 100644 --- a/ggml/src/ggml-cpu/vec.h +++ b/ggml/src/ggml-cpu/vec.h @@ -119,36 +119,149 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG } #if defined(GGML_SIMD) - const int np = (n & ~(GGML_F16_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; // running when 16 + const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers + + const int np = (n & ~(ggml_f16_step - 1)); + + svfloat16_t sum_00 = svdup_n_f16(0.0f); + svfloat16_t sum_01 = svdup_n_f16(0.0f); + svfloat16_t sum_02 = svdup_n_f16(0.0f); + svfloat16_t sum_03 = svdup_n_f16(0.0f); + + svfloat16_t sum_10 = svdup_n_f16(0.0f); + svfloat16_t sum_11 = svdup_n_f16(0.0f); + svfloat16_t sum_12 = svdup_n_f16(0.0f); + svfloat16_t sum_13 = svdup_n_f16(0.0f); + + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + + for (int i = 0; i < np; i += ggml_f16_step) { + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements + + ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst + sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1 + ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements + sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1); + + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements + + ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements + sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2); + ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1); + sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2); + + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + + ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2); + sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3); + ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2); + sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3); + + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + + ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3); + sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4); + ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3); + sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4); + + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + + ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4); + + sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5); + ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4); + sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5); + + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + + ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5); + + sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6); + ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5); + sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6); + + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + + ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6); + + sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7); + ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6); + sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7); + + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + + ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7); + + sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8); + ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7); + sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8); + } + + const int np2 = (n & ~(ggml_f16_epr - 1)); + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); + + svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0); + sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry); + rx = GGML_F16x_VEC_LOAD(x[1] + k, 0); + sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry); + } + + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2)); + svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); + + sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00); + sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10); + } + GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03); + GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13); + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + for (int i = 0; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + } + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); - GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; + GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { - ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); - sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + } } } - } - // reduce sum0..sum3 to sum0 - for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { - GGML_F16_VEC_REDUCE(sumf[k], sum[k]); - } + // reduce sum0..sum3 to sum0 + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + GGML_F16_VEC_REDUCE(sumf[k], sum[k]); + } - // leftovers - for (int i = np; i < n; ++i) { - for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { - sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + // leftovers + for (int i = np; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i])); + } } - } + #endif #else for (int i = 0; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { @@ -243,6 +356,14 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const svst1_f32(pg, y + np2, ay1); } + #elif defined(__riscv_v_intrinsic) + for (int i = 0, avl; i < n; i += avl) { + avl = __riscv_vsetvl_e32m8(n - i); + vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl); + vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl); + vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, v, ay, avl); + __riscv_vse32_v_f32m8(&y[i], ny, avl); + } #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -276,27 +397,112 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) { #if defined(GGML_SIMD) - const int np = (n & ~(GGML_F16_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; + const int ggml_f16_step = 8 * ggml_f16_epr; + + GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v); + + const int np= (n & ~(ggml_f16_step - 1)); + + svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + for (int i = 0; i < np; i += ggml_f16_step) { + ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx); + + GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0); + + ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx); + + GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1); + + ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2); + ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx); + + GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2); + + ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3); + ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx); + + GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3); + + ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4); + ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx); + + GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4); + + ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5); + ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx); + + GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5); - GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6); + ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx); - GGML_F16_VEC ax[GGML_F16_ARR]; - GGML_F16_VEC ay[GGML_F16_ARR]; + GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6); - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7); + ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx); - GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7); } - } + const int np2 = (n & ~(ggml_f16_epr - 1)); + for (int k = np; k < np2; k += ggml_f16_epr) { + svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0); + svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0); + ry = GGML_F16x_VEC_FMA(ry, rx, vx); - // leftovers - for (int i = np; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); - } + GGML_F16x_VEC_STORE(y + k, ry, 0); + } + + if (np2 < n) { + svbool_t pg = svwhilelt_b16(np2, n); + svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2)); + svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2)); + hy = svmad_f16_x(pg, hx, vx, hy); + svst1_f16(pg, (__fp16 *)(y + np2), hy); + } + + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v); + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -324,6 +530,16 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int y[i] += x[k][i]*v[k][0]; } } + #elif defined(__riscv_v_intrinsic) + for (int i = 0, avl; i < n; i += avl) { + avl = __riscv_vsetvl_e32m8(n - i); + vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl); + for (int k = 0; k < GGML_VEC_MAD_UNROLL; k++) { + vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[k][i], avl); + ay = __riscv_vfmadd_vf_f32m8(ax, v[k][0], ay, avl); + } + __riscv_vse32_v_f32m8(&y[i], ay, avl); + } #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -375,6 +591,14 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co for (int i = 0; i < n; ++i) { y[i] = x[i]*s + b; } + #elif defined(__riscv_v_intrinsic) + for (int i = 0, avl; i < n; i += avl) { + avl = __riscv_vsetvl_e32m8(n - i); + vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl); + vfloat32m8_t vb = __riscv_vfmv_v_f_f32m8(b, avl); + vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, s, vb, avl); + __riscv_vse32_v_f32m8(&y[i], ny, avl); + } #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -436,6 +660,13 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { ay1 = svmul_f32_m(pg, ay1, vx); svst1_f32(pg, y + np, ay1); } + #elif defined(__riscv_v_intrinsic) + for (int i = 0, avl; i < n; i += avl) { + avl = __riscv_vsetvl_e32m8(n - i); + vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl); + vfloat32m8_t ny = __riscv_vfmul_vf_f32m8(ay, v, avl); + __riscv_vse32_v_f32m8(&y[i], ny, avl); + } #else const int np = (n & ~(GGML_F32_STEP - 1)); @@ -467,25 +698,59 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) { #if defined(GGML_SIMD) - const int np = (n & ~(GGML_F16_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = svcntb() * 8; + const int ggml_f16_epr = sve_register_length / 16; + const int ggml_f16_step = 2 * ggml_f16_epr; + + GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v); + const int np = (n & ~(ggml_f16_step - 1)); + svfloat16_t ay1, ay2; + + for (int i = 0; i < np; i += ggml_f16_step) { + ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0); + ay1 = GGML_F16x_VEC_MUL(ay1, vx); + GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0); + + ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1); + ay2 = GGML_F16x_VEC_MUL(ay2, vx); + GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1); + } + // leftovers + // maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only + if (np < n) { + svbool_t pg = svwhilelt_b16(np, n); + svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np)); + svfloat16_t out = svmul_f16_m(pg, hy, vx); + svst1_f16(pg, (__fp16 *)(y + np), out); + } + #elif defined(__riscv_v_intrinsic) + // todo: RVV impl + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); + } + #else + const int np = (n & ~(GGML_F16_STEP - 1)); - GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); - GGML_F16_VEC ay[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; - for (int i = 0; i < np; i += GGML_F16_STEP) { - for (int j = 0; j < GGML_F16_ARR; j++) { - ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); - ay[j] = GGML_F16_VEC_MUL(ay[j], vx); + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_MUL(ay[j], vx); - GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } } - } - // leftovers - for (int i = np; i < n; ++i) { - y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); - } + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v); + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -737,7 +1002,39 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) { } #endif -#if defined(__ARM_NEON) && defined(__aarch64__) +#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + +inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) { + const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f); + const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f); + const svfloat32_t n = svsub_f32_x(pg, z, r); + const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f); + const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23); + const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1)))); + const svbool_t c = svacgt_n_f32(pg, n, 126); + const svfloat32_t u = svmul_f32_x(pg, b, b); + const svfloat32_t j = svmla_f32_x(pg, + svmul_n_f32_x(pg, b, 0x1.ffffecp-1f), + svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b), + svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u); + const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000); + const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000)); + const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d)); + return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1), + svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j))); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) { + const svfloat32_t one = svdup_n_f32_x(pg, 1.0f); + const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f); + const svfloat32_t neg_x = svsub_f32_x(pg, zero, x); + const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x); + const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x); + return svdiv_f32_x(pg, x, one_plus_exp_neg_x); +} + +#elif defined(__ARM_NEON) && defined(__aarch64__) // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps @@ -928,7 +1225,59 @@ inline static __m128 ggml_v_silu(__m128 x) { return _mm_div_ps(x, one_plus_exp_neg_x); } -#endif // __ARM_NEON / __AVX2__ / __SSE2__ +#elif defined(__riscv_v_intrinsic) + +// adapted from arm limited optimized routine +// the maximum error is 1.45358 plus 0.5 ulps +// numbers above 88.38 will flush to infinity +// numbers beneath -103.97 will flush to zero +inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) { + const vfloat32m2_t r = __riscv_vfmv_v_f_f32m2(0x1.8p23f, vl); +#ifdef __riscv_xtheadvector + // workaround for compiler bug (gcc 14.3.0: Error: unrecognized opcode `th.vmv1r.v v2,v4') + vfloat32m2_t z = __riscv_vfadd_vf_f32m2(r, 0.0f, vl); + z = __riscv_vfmacc_vf_f32m2(z, 0x1.715476p+0f, x, vl); +#else + const vfloat32m2_t z = __riscv_vfmacc_vf_f32m2(r, 0x1.715476p+0f, x, vl); +#endif + const vfloat32m2_t n = __riscv_vfsub_vv_f32m2(z, r, vl); + const vfloat32m2_t b = __riscv_vfnmsac_vf_f32m2(__riscv_vfnmsac_vf_f32m2(x, 0x1.62e4p-1f, n, vl), + 0x1.7f7d1cp-20f, n, vl); + const vuint32m2_t e = __riscv_vsll_vx_u32m2(__riscv_vreinterpret_v_f32m2_u32m2(z), 23, vl); + const vfloat32m2_t k = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(e, 0x3f800000, vl)); // 1.0f + const vbool16_t c = __riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 126.0f, vl); + const vfloat32m2_t u = __riscv_vfmul_vv_f32m2(b, b, vl); + const vfloat32m2_t j = __riscv_vfmacc_vv_f32m2( + __riscv_vfmul_vf_f32m2(b, 0x1.ffffecp-1f, vl), + __riscv_vfmacc_vv_f32m2( + __riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.fffdb6p-2f, vl), 0x1.555e66p-3f, b, vl), + __riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.573e2ep-5f, vl), 0x1.0e4020p-7f, b, vl), + u, vl), u, vl); + if (!__riscv_vcpop_m_b16(c, vl)) + return __riscv_vfmacc_vv_f32m2(k, j, k, vl); + const vbool16_t dm = __riscv_vmfle_vf_f32m2_b16(n, 0.0f, vl); + const vuint32m2_t d = __riscv_vmerge_vxm_u32m2(__riscv_vmv_v_x_u32m2(0, vl), 0x82000000, dm, vl); + const vfloat32m2_t s1 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(d, 0x7f000000, vl)); + const vfloat32m2_t s2 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vsub_vv_u32m2(e, d, vl)); + const vfloat32m2_t r1 = __riscv_vmerge_vvm_f32m2( + __riscv_vfmacc_vv_f32m2(k, k, j, vl), + __riscv_vfmul_vv_f32m2(__riscv_vfmacc_vv_f32m2(s2, s2, j, vl), s1, vl), + c, vl); + return __riscv_vmerge_vvm_f32m2( + r1, __riscv_vfmul_vv_f32m2(s1, s1, vl), + __riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 192.0f, vl), + vl); +} + +// computes silu x/(1+exp(-x)) in single precision vector +inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) { + const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl); + const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl); + const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl); + return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl); +} + +#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { diff --git a/ggml/src/ggml-cuda/CMakeLists.txt b/ggml/src/ggml-cuda/CMakeLists.txt index ea824965aae2d..d3dfc7807de0e 100644 --- a/ggml/src/ggml-cuda/CMakeLists.txt +++ b/ggml/src/ggml-cuda/CMakeLists.txt @@ -94,7 +94,11 @@ if (CUDAToolkit_FOUND) # As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas) else () - target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static) + if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "10.1") + target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) + else() + target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static) + endif() endif() else() target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas) diff --git a/ggml/src/ggml-cuda/binbcast.cu b/ggml/src/ggml-cuda/binbcast.cu index e1fbf0e13665d..1c76566344a88 100644 --- a/ggml/src/ggml-cuda/binbcast.cu +++ b/ggml/src/ggml-cuda/binbcast.cu @@ -1,5 +1,6 @@ #include "binbcast.cuh" #include +#include static __device__ __forceinline__ float op_repeat(const float a, const float b) { return b; @@ -22,13 +23,16 @@ static __device__ __forceinline__ float op_div(const float a, const float b) { return a / b; } -template + + +template static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst, - int ne0, int ne1, int ne2, int ne3, - int ne10, int ne11, int ne12, int ne13, - /*int s0, */ int s1, int s2, int s3, - /*int s00,*/ int s01, int s02, int s03, - /*int s10,*/ int s11, int s12, int s13) { + const int ne0, const int ne1, const int ne2, const int ne3, + const int ne10, const int ne11, const int ne12, const int ne13, + /*int s0, */ const int s1, const int s2, const int s3, + /*int s00,*/ const int s01, const int s02, const int s03, + /*int s10,*/ const int s11, const int s12, const int s13, + src1_ptrs... src1s) { const int i0s = blockDim.x*blockIdx.x + threadIdx.x; const int i1 = (blockDim.y*blockIdx.y + threadIdx.y); const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3; @@ -46,24 +50,31 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_dst = i3*s3 + i2*s2 + i1*s1; - const src0_t * src0_row = src0 + i_src0; - const src1_t * src1_row = src1 + i_src1; + const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr; dst_t * dst_row = dst + i_dst; for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) { const int i10 = i0 % ne10; - dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); + + float result = src0_row ? (float) src0_row[i0] : 0.0f; + if constexpr (sizeof...(src1_ptrs) > 0) { + result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10]))); + } else { + result = bin_op(result, (float)src1[i_src1 + i10]); + } + + dst_row[i0] = (dst_t) result; } } -template -static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, - int ne0, int ne1, int ne2, int ne3, - int ne10, int ne11, int ne12, int ne13, - /*int s0, */ int s1, int s2, int s3, - /*int s00,*/ int s01, int s02, int s03, - /*int s10,*/ int s11, int s12, int s13) { - +template +static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, + const int ne0, const int ne1, const int ne2,const int ne3, + const int ne10, const int ne11, const int ne12, const int ne13, + /*int s0, */ const int s1, const int s2, const int s3, + /*int s00,*/ const int s01, const int s02, const int s03, + /*int s10,*/ const int s11, const int s12, const int s13, + src1_ptrs ... src1s) { const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i3 = i/(ne2*ne1*ne0); @@ -83,12 +94,190 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_dst = i3*s3 + i2*s2 + i1*s1; - const src0_t * src0_row = src0 + i_src0; - const src1_t * src1_row = src1 + i_src1; + const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr; dst_t * dst_row = dst + i_dst; const int i10 = i0 % ne10; - dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); + + float result = src0_row ? (float) src0_row[i0] : 0.0f; + if constexpr (sizeof...(src1_ptrs) > 0) { + result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10]))); + } else { + result = bin_op(result, (float)src1[i_src1 + i10]); + } + + dst_row[i0] = (dst_t) result; +} + +template +static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, + cudaStream_t stream, std::index_sequence) { + GGML_TENSOR_BINARY_OP_LOCALS + + int nr0 = ne10 / ne0; + int nr1 = ne11 / ne1; + int nr2 = ne12 / ne2; + int nr3 = ne13 / ne3; + + int nr[4] = { nr0, nr1, nr2, nr3 }; + + int64_t cne[] = { ne0, ne1, ne2, ne3 }; + int64_t cne0[] = { ne00, ne01, ne02, ne03 }; + int64_t cne1[] = { ne10, ne11, ne12, ne13 }; + + size_t cnb[] = { nb0, nb1, nb2, nb3 }; + size_t cnb0[] = { nb00, nb01, nb02, nb03 }; + size_t cnb1[] = { nb10, nb11, nb12, nb13 }; + + auto collapse = [](int64_t cne[]) { + cne[0] *= cne[1]; + cne[1] = cne[2]; + cne[2] = cne[3]; + cne[3] = 1; + }; + + auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { + cnb[1] *= cne[1]; + cnb[2] *= cne[2]; + cnb[3] *= cne[3]; + }; + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { + for (int i = 0; i < 4; i++) { + if (nr[i] != 1) { + break; + } + if (i > 0) { + collapse_nb(cnb, cne); + collapse_nb(cnb0, cne0); + collapse_nb(cnb1, cne1); + collapse(cne); + collapse(cne0); + collapse(cne1); + } + } + } + + { + int64_t ne0 = cne[0]; + int64_t ne1 = cne[1]; + int64_t ne2 = cne[2]; + int64_t ne3 = cne[3]; + + //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00); + //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01); + //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02); + //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03); + + int64_t ne10 = cne1[0]; + int64_t ne11 = cne1[1]; + int64_t ne12 = cne1[2]; + int64_t ne13 = cne1[3]; + + size_t nb0 = cnb[0]; + size_t nb1 = cnb[1]; + size_t nb2 = cnb[2]; + size_t nb3 = cnb[3]; + + size_t nb00 = cnb0[0]; + size_t nb01 = cnb0[1]; + size_t nb02 = cnb0[2]; + size_t nb03 = cnb0[3]; + + size_t nb10 = cnb1[0]; + size_t nb11 = cnb1[1]; + size_t nb12 = cnb1[2]; + size_t nb13 = cnb1[3]; + + size_t s0 = nb0 / sizeof(dst_t); + size_t s1 = nb1 / sizeof(dst_t); + size_t s2 = nb2 / sizeof(dst_t); + size_t s3 = nb3 / sizeof(dst_t); + + size_t s10 = nb10 / sizeof(src1_t); + size_t s11 = nb11 / sizeof(src1_t); + size_t s12 = nb12 / sizeof(src1_t); + size_t s13 = nb13 / sizeof(src1_t); + + size_t s00 = nb00 / sizeof(src0_t); + size_t s01 = nb01 / sizeof(src0_t); + size_t s02 = nb02 / sizeof(src0_t); + size_t s03 = nb03 / sizeof(src0_t); + + GGML_ASSERT(nb0 % sizeof(dst_t) == 0); + GGML_ASSERT(nb1 % sizeof(dst_t) == 0); + GGML_ASSERT(nb2 % sizeof(dst_t) == 0); + GGML_ASSERT(nb3 % sizeof(dst_t) == 0); + + GGML_ASSERT(nb00 % sizeof(src0_t) == 0); + GGML_ASSERT(nb01 % sizeof(src0_t) == 0); + GGML_ASSERT(nb02 % sizeof(src0_t) == 0); + GGML_ASSERT(nb03 % sizeof(src0_t) == 0); + + GGML_ASSERT(nb10 % sizeof(src1_t) == 0); + GGML_ASSERT(nb11 % sizeof(src1_t) == 0); + GGML_ASSERT(nb12 % sizeof(src1_t) == 0); + GGML_ASSERT(nb13 % sizeof(src1_t) == 0); + + GGML_ASSERT(s0 == 1); + GGML_ASSERT(s00 == 1); + GGML_ASSERT(s10 == 1); + + const int block_size = 128; + + int64_t hne0 = std::max(ne0 / 2LL, 1LL); + + dim3 block_dims; + block_dims.x = std::min(hne0, block_size); + block_dims.y = std::min(ne1, block_size / block_dims.x); + block_dims.z = std::min(std::min(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U); + + dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x, + (ne1 + block_dims.y - 1) / block_dims.y, + (ne2 * ne3 + block_dims.z - 1) / block_dims.z); + + if (block_nums.z > 65535) { + int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size; + if constexpr (sizeof...(I) > 0) { + k_bin_bcast_unravel + <<>>(src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00,*/ s01, s02, s03, + /* s10,*/ s11, s12,s13, + (const src1_t *) dst->src[I + 1]->data...); + } else { + k_bin_bcast_unravel + <<>>(src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00,*/ s01, s02, s03, + /* s10,*/ s11, s12,s13); + } + } else { + if constexpr (sizeof...(I) > 0) { + k_bin_bcast + <<>>(src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00,*/ s01, s02, s03, + /* s10,*/ s11, s12,s13, + (const src1_t *) dst->src[I + 1]->data...); + } else { + k_bin_bcast + <<>>(src0_dd, src1_dd, dst_dd, + ne0, ne1, ne2, ne3, + ne10, ne11, ne12, ne13, + /* s0, */ s1, s2, s3, + /* s00,*/ s01, s02, s03, + /* s10,*/ s11, s12,s13); + } + } + } } template @@ -120,160 +309,14 @@ static __global__ void k_repeat_back( dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum; } -template +template struct bin_bcast_cuda { template void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, cudaStream_t stream) { - - GGML_TENSOR_BINARY_OP_LOCALS - - int nr0 = ne10/ne0; - int nr1 = ne11/ne1; - int nr2 = ne12/ne2; - int nr3 = ne13/ne3; - - int nr[4] = { nr0, nr1, nr2, nr3 }; - - // collapse dimensions until first broadcast dimension - int64_t cne[] = {ne0, ne1, ne2, ne3}; - int64_t cne0[] = {ne00, ne01, ne02, ne03}; - int64_t cne1[] = {ne10, ne11, ne12, ne13}; - - size_t cnb[] = {nb0, nb1, nb2, nb3}; - size_t cnb0[] = {nb00, nb01, nb02, nb03}; - size_t cnb1[] = {nb10, nb11, nb12, nb13}; - - auto collapse = [](int64_t cne[]) { - cne[0] *= cne[1]; - cne[1] = cne[2]; - cne[2] = cne[3]; - cne[3] = 1; - }; - - auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { - cnb[1] *= cne[1]; - cnb[2] *= cne[2]; - cnb[3] *= cne[3]; - }; - - if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { - for (int i = 0; i < 4; i++) { - if (nr[i] != 1) { - break; - } - if (i > 0) { - collapse_nb(cnb, cne); - collapse_nb(cnb0, cne0); - collapse_nb(cnb1, cne1); - collapse(cne); - collapse(cne0); - collapse(cne1); - } - } - } - - { - int64_t ne0 = cne[0]; - int64_t ne1 = cne[1]; - int64_t ne2 = cne[2]; - int64_t ne3 = cne[3]; - - //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00); - //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01); - //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02); - //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03); - - int64_t ne10 = cne1[0]; - int64_t ne11 = cne1[1]; - int64_t ne12 = cne1[2]; - int64_t ne13 = cne1[3]; - - size_t nb0 = cnb[0]; - size_t nb1 = cnb[1]; - size_t nb2 = cnb[2]; - size_t nb3 = cnb[3]; - - size_t nb00 = cnb0[0]; - size_t nb01 = cnb0[1]; - size_t nb02 = cnb0[2]; - size_t nb03 = cnb0[3]; - - size_t nb10 = cnb1[0]; - size_t nb11 = cnb1[1]; - size_t nb12 = cnb1[2]; - size_t nb13 = cnb1[3]; - - size_t s0 = nb0 / sizeof(dst_t); - size_t s1 = nb1 / sizeof(dst_t); - size_t s2 = nb2 / sizeof(dst_t); - size_t s3 = nb3 / sizeof(dst_t); - - size_t s10 = nb10 / sizeof(src1_t); - size_t s11 = nb11 / sizeof(src1_t); - size_t s12 = nb12 / sizeof(src1_t); - size_t s13 = nb13 / sizeof(src1_t); - - size_t s00 = nb00 / sizeof(src0_t); - size_t s01 = nb01 / sizeof(src0_t); - size_t s02 = nb02 / sizeof(src0_t); - size_t s03 = nb03 / sizeof(src0_t); - - GGML_ASSERT(nb0 % sizeof(dst_t) == 0); - GGML_ASSERT(nb1 % sizeof(dst_t) == 0); - GGML_ASSERT(nb2 % sizeof(dst_t) == 0); - GGML_ASSERT(nb3 % sizeof(dst_t) == 0); - - GGML_ASSERT(nb00 % sizeof(src0_t) == 0); - GGML_ASSERT(nb01 % sizeof(src0_t) == 0); - GGML_ASSERT(nb02 % sizeof(src0_t) == 0); - GGML_ASSERT(nb03 % sizeof(src0_t) == 0); - - GGML_ASSERT(nb10 % sizeof(src1_t) == 0); - GGML_ASSERT(nb11 % sizeof(src1_t) == 0); - GGML_ASSERT(nb12 % sizeof(src1_t) == 0); - GGML_ASSERT(nb13 % sizeof(src1_t) == 0); - - GGML_ASSERT(s0 == 1); - GGML_ASSERT(s00 == 1); - GGML_ASSERT(s10 == 1); - - const int block_size = 128; - - int64_t hne0 = std::max(ne0/2LL, 1LL); - - dim3 block_dims; - block_dims.x = std::min(hne0, block_size); - block_dims.y = std::min(ne1, block_size / block_dims.x); - block_dims.z = std::min(std::min(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U); - - dim3 block_nums( - (hne0 + block_dims.x - 1) / block_dims.x, - (ne1 + block_dims.y - 1) / block_dims.y, - (ne2*ne3 + block_dims.z - 1) / block_dims.z - ); - - if (block_nums.z > 65535) { - // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel - int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; - k_bin_bcast_unravel<<>>( - src0_dd, src1_dd, dst_dd, - ne0, ne1, ne2, ne3, - ne10, ne11, ne12, ne13, - /* s0, */ s1, s2, s3, - /* s00, */ s01, s02, s03, - /* s10, */ s11, s12, s13); - } else { - k_bin_bcast<<>>( - src0_dd, src1_dd, dst_dd, - ne0, ne1, ne2, ne3, - ne10, ne11, ne12, ne13, - /* s0, */ s1, s2, s3, - /* s00, */ s01, s02, s03, - /* s10, */ s11, s12, s13); - } - } + launch_bin_bcast_pack( + src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence{}); } }; @@ -312,7 +355,7 @@ static void ggml_cuda_op_bin_bcast( } void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_cuda_op_bin_bcast>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream()); + ggml_cuda_op_bin_bcast>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream()); } void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -331,6 +374,68 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); } +template +static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + cudaStream_t stream = ctx.stream(); + + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + launch_bin_bcast_pack(src0, src1, dst, + (const float *) src0->data, (const float *) src1->data, (float *) dst->data, + stream, std::make_index_sequence{}); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + launch_bin_bcast_pack(src0, src1, dst, + (const half *) src0->data, (const half *) src1->data, (half *) dst->data, + stream, std::make_index_sequence{}); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { + launch_bin_bcast_pack(src0, src1, dst, + (const half *) src0->data, (const float *) src1->data, (half *) dst->data, + stream, std::make_index_sequence{}); + } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { + launch_bin_bcast_pack(src0, src1, dst, + (const half *) src0->data, (const float *) src1->data, (float *) dst->data, + stream, std::make_index_sequence{}); + } else { + fprintf(stderr, + "%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n", + __func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); + GGML_ABORT("fatal error"); + } +} + + +void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) { + GGML_ASSERT(2 <= n_fuse && n_fuse <= 8); + + switch (n_fuse) { + case 2: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 3: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 4: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 5: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 6: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 7: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + case 8: + ggml_cuda_op_fused_binbcast_impl(ctx, dst); + break; + default: + GGML_ASSERT(false && "Unsupported n_fuse value"); + } +} + void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; diff --git a/ggml/src/ggml-cuda/binbcast.cuh b/ggml/src/ggml-cuda/binbcast.cuh index 3ac1c9b03fcea..62bc950111b70 100644 --- a/ggml/src/ggml-cuda/binbcast.cuh +++ b/ggml/src/ggml-cuda/binbcast.cuh @@ -7,3 +7,5 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + +void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse); diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 767ad83f60eb5..85bc9e933bca5 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -107,9 +107,9 @@ constexpr bool ggml_cuda_has_arch(const int arch) { return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__); } -constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) { +constexpr int ggml_cuda_highest_compiled_arch_impl(const int /*arch*/, const int cur) { if (cur == 0) { - GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch); + return -1; } return cur; } @@ -420,16 +420,28 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { template static __device__ __forceinline__ int warp_reduce_all(int x) { -#ifdef GGML_USE_HIP + if (width == ggml_cuda_get_physical_warp_size()) { + return __all_sync(0xffffffff, x); + } else { #pragma unroll - for (int offset = width/2; offset > 0; offset >>= 1) { - x = x && __shfl_xor_sync(0xffffffff, x, offset, width); + for (int offset = width/2; offset > 0; offset >>= 1) { + x = __shfl_xor_sync(0xffffffff, x, offset, width) && x; + } + return x; + } +} + +template +static __device__ __forceinline__ int warp_reduce_any(int x) { + if (width == ggml_cuda_get_physical_warp_size()) { + return __any_sync(0xffffffff, x); + } else { +#pragma unroll + for (int offset = width/2; offset > 0; offset >>= 1) { + x = __shfl_xor_sync(0xffffffff, x, offset, width) || x; + } + return x; } - return x; -#else - static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented"); - return __all_sync(0xffffffff, x); -#endif // GGML_USE_HIP } template diff --git a/ggml/src/ggml-cuda/conv2d.cu b/ggml/src/ggml-cuda/conv2d.cu new file mode 100644 index 0000000000000..142dd66903aaa --- /dev/null +++ b/ggml/src/ggml-cuda/conv2d.cu @@ -0,0 +1,166 @@ +#include "conv2d.cuh" +#include "convert.cuh" + +struct conv_params { + const int64_t IW, IH; + const int64_t OW, OH; + const int64_t KW, KH; + const int64_t ST_X, ST_Y; + const int64_t PD_X, PD_Y; + const int64_t DL_X, DL_Y; + const int64_t IC, OC; + const int64_t B; + const int64_t TOTAL; +}; + +struct kernel_bounds { + int64_t y_min, y_max; + int64_t x_min, x_max; +}; + +__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) { + return (a > b) ? a : b; +} + +__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) { + return (a < b) ? a : b; +} + +__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) { + kernel_bounds bounds; + bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y); + bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y); + bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X); + bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X); + return bounds; +} + +__device__ __forceinline__ int calculate_input_coord(int64_t out_coord, + int64_t kern_coord, + int64_t stride, + int64_t dilation, + int64_t padding) { + return out_coord * stride + kern_coord * dilation - padding; +} + +struct whcn_layout { + __device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) { + return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x; + } + + __device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) { + return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx; + } + + __device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) { + return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x; + } + + __device__ static void unpack_indices(int64_t global_idx, + const conv_params & P, + int64_t & n, + int64_t & c, + int64_t & out_y, + int64_t & out_x) { + out_x = global_idx % P.OW; + out_y = (global_idx / P.OW) % P.OH; + c = (global_idx / (P.OW * P.OH)) % P.OC; + n = global_idx / (P.OW * P.OH * P.OC); + } +}; + +template +static __global__ void conv2d_kernel(const float * __restrict__ input, + const T * __restrict__ kernel, + float * __restrict__ output, + const conv_params P) { + const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x; + + if (global_idx >= P.TOTAL) { + return; + } + + int64_t n, c_out, out_y, out_x; + Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x); + + float acc = 0.0f; + + for (int64_t c_in = 0; c_in < P.IC; ++c_in) { + kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P); + + for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) { + const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y); + + for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) { + const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X); + + const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)]; + const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)]; + acc += (input_val * ggml_cuda_cast(kernel_val)); + } + } + } + + // [N, OC, OH, OW] + output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc; +} + +template +static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) { + const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE; + conv2d_kernel<<>>(X_D, K_D, Y_D, P); +} + +static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) { + conv2d_cuda(X_D, K_D, Y_D, P, st); +} + +static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) { + conv2d_cuda(X_D, K_D, Y_D, P, st); +} + +void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * kernel = dst->src[0]; + const ggml_tensor * input = dst->src[1]; + float * K_D = (float *) kernel->data; + const float * X_D = (const float *) input->data; + float * Y_D = (float *) dst->data; + + GGML_ASSERT(ggml_is_contiguous(kernel)); + GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32); + + // same number of input channels + GGML_ASSERT(input->ne[2] == kernel->ne[2]); + + cudaStream_t st = ctx.stream(); + + const int32_t * p = (const int32_t *) dst->op_params; + const int ST_X = p[0]; // stride_x + const int ST_Y = p[1]; // stride_y + const int PD_X = p[2]; // padding_x + const int PD_Y = p[3]; // padding_y + const int DL_X = p[4]; // dilation_x + const int DL_Y = p[5]; // dilation_y + + // No cwhn + GGML_ASSERT(p[6] == false); + + const int IW = input->ne[0]; // input_w + const int IH = input->ne[1]; // input_h + const int OW = dst->ne[0]; // output_w + const int OH = dst->ne[1]; // output_h + const int KW = kernel->ne[0]; // kernel_w + const int KH = kernel->ne[1]; // kernel_h + const int IC = input->ne[2]; // input_channels + const int OC = kernel->ne[3]; // ouptut_chanles + const int B = input->ne[3]; // n_batches + + const int64_t total = B * OC * OH * OW; + conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total }; + + if (kernel->type == GGML_TYPE_F16) { + conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st); + } else { + conv2d_cuda_f32(X_D, K_D, Y_D, params, st); + } +} diff --git a/ggml/src/ggml-cuda/conv2d.cuh b/ggml/src/ggml-cuda/conv2d.cuh new file mode 100644 index 0000000000000..ce4802c7ed797 --- /dev/null +++ b/ggml/src/ggml-cuda/conv2d.cuh @@ -0,0 +1,5 @@ +#pragma once +#include "common.cuh" + +#define CUDA_CONV2D_BLOCK_SIZE 256 +void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index aa45ab39ed89e..e06f95f0819ed 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -12,6 +12,7 @@ #include "ggml-cuda/clamp.cuh" #include "ggml-cuda/concat.cuh" #include "ggml-cuda/conv-transpose-1d.cuh" +#include "ggml-cuda/conv2d.cuh" #include "ggml-cuda/conv2d-dw.cuh" #include "ggml-cuda/conv2d-transpose.cuh" #include "ggml-cuda/convert.cuh" @@ -204,6 +205,8 @@ static ggml_cuda_device_info ggml_cuda_init() { GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__); #endif // GGML_CUDA_FORCE_CUBLAS GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count); + + std::vector> turing_devices_without_mma; for (int id = 0; id < info.device_count; ++id) { int device_vmm = 0; @@ -261,7 +264,25 @@ static ggml_cuda_device_info ggml_cuda_init() { info.devices[id].cc = 100*prop.major + 10*prop.minor; GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no"); -#endif // defined(GGML_USE_HIP) + std::string device_name(prop.name); + if (device_name == "NVIDIA GeForce MX450") { + turing_devices_without_mma.push_back({ id, device_name }); + } else if (device_name == "NVIDIA GeForce MX550") { + turing_devices_without_mma.push_back({ id, device_name }); + } else if (device_name.substr(0, 21) == "NVIDIA GeForce GTX 16") { + turing_devices_without_mma.push_back({ id, device_name }); + } +#endif // defined(GGML_USE_HIP) + } + + if (ggml_cuda_highest_compiled_arch(GGML_CUDA_CC_TURING) >= GGML_CUDA_CC_TURING && !turing_devices_without_mma.empty()) { + GGML_LOG_INFO("The following devices will have suboptimal performance due to a lack of tensor cores:\n"); + for (size_t device_pos = 0; device_pos < turing_devices_without_mma.size(); device_pos++) { + GGML_LOG_INFO( + " Device %d: %s\n", turing_devices_without_mma[device_pos].first, turing_devices_without_mma[device_pos].second.c_str()); + } + GGML_LOG_INFO( + "Consider compiling with CMAKE_CUDA_ARCHITECTURES=61-virtual;80-virtual and DGGML_CUDA_FORCE_MMQ to force the use of the Pascal code for Turing.\n"); } for (int id = 0; id < info.device_count; ++id) { @@ -2431,6 +2452,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_IM2COL: ggml_cuda_op_im2col(ctx, dst); break; + case GGML_OP_CONV_2D: + ggml_cuda_op_conv2d(ctx, dst); + break; case GGML_OP_CONV_2D_DW: ggml_cuda_op_conv2d_dw(ctx, dst); break; @@ -2797,9 +2821,14 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, return false; } - if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) { + if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) { const ggml_tensor *rms_norm = cgraph->nodes[node_idx]; const ggml_tensor *mul = cgraph->nodes[node_idx+1]; + const ggml_tensor *add = nullptr; + + if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) { + add = cgraph->nodes[node_idx+2]; + } GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(rms_norm->type == GGML_TYPE_F32); @@ -2811,6 +2840,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, return false; } + if (add && (add->src[0]->type != GGML_TYPE_F32 || + add->src[1]->type != GGML_TYPE_F32 || + add->type != GGML_TYPE_F32) ) { + return false; + } + //if rms norm is the B operand, then we don't handle broadcast if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) { return false; @@ -2821,6 +2856,10 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, return false; } + if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) { + return false; + } + return true; } @@ -2867,7 +2906,46 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr); if (!disable_fusion) { - if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) { + + if (node->op == GGML_OP_ADD) { + int n_fuse = 0; + ggml_op ops[8]; + std::fill(ops, ops + 8, GGML_OP_ADD); + + for (; n_fuse <= 6; ++n_fuse){ + if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) { + break; + } + if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) { + break; + } + if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) { + break; + } + } + + n_fuse++; + + if (n_fuse > 1) { + for (int j = 0; j < n_fuse - 1; ++j) { + node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1]; + } + cgraph->nodes[i + n_fuse - 1]->data = node->data; + ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse); + i += n_fuse - 1; + + continue; + } + } + + + if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) { + ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]); + i += 2; + continue; + } + + if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) { ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]); i++; continue; @@ -3086,7 +3164,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { return false; } -#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) +#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) || defined(GGML_USE_HIP) cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); if (err != cudaSuccess) { // clear the error @@ -3481,6 +3559,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]); } case GGML_OP_IM2COL: + case GGML_OP_CONV_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_POOL_2D: diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu index 576032a0ce0dd..714b23f9f49aa 100644 --- a/ggml/src/ggml-cuda/mmq.cu +++ b/ggml/src/ggml-cuda/mmq.cu @@ -3,6 +3,140 @@ #include +// To reduce shared memory use, store "it" and "iex_used" with 22/10 bits each. +struct mmq_ids_helper_store { + uint32_t data; + + __device__ mmq_ids_helper_store(const uint32_t it, const uint32_t iex_used) { + data = (it & 0x003FFFFF) | (iex_used << 22); + } + + __device__ uint32_t it() const { + return data & 0x003FFFFF; + } + + __device__ uint32_t iex_used() const { + return data >> 22; + } +}; +static_assert(sizeof(mmq_ids_helper_store) == 4, "unexpected size for mmq_ids_helper_store"); + +// Helper function for mul_mat_id, converts ids to a more convenient format. +// ids_src1 describes how to permute the flattened column indices of src1 in order to get a compact src1 tensor sorted by expert. +// ids_dst describes the same mapping but for the dst tensor. +// The upper and lower bounds for the ith expert in the compact src1 tensor are stored in expert_bounds[i:i+1]. +template +__launch_bounds__(ggml_cuda_get_physical_warp_size(), 1) +static __global__ void mmq_ids_helper( + const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds, + const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1) { + constexpr int warp_size = ggml_cuda_get_physical_warp_size(); + const int n_expert_used = n_expert_used_template == 0 ? n_expert_used_var : n_expert_used_template; + const int expert = blockIdx.x; + + extern __shared__ char data_mmq_ids_helper[]; + mmq_ids_helper_store * store = (mmq_ids_helper_store *) data_mmq_ids_helper; + + int nex_prev = 0; // Number of columns for experts with a lower index. + int it_compact = 0; // Running index for the compact slice of this expert. + + if constexpr (n_expert_used_template == 0) { + // Generic implementation: + for (int it = 0; it < n_tokens; ++it) { + int iex_used = -1; // The index at which the expert is used, if any. + for (int iex = threadIdx.x; iex < n_expert_used; iex += warp_size) { + const int expert_used = ids[it*si1 + iex]; + nex_prev += expert_used < expert; + if (expert_used == expert) { + iex_used = iex; + } + } + + if (iex_used != -1) { + store[it_compact] = mmq_ids_helper_store(it, iex_used); + } + + if (warp_reduce_any(iex_used != -1)) { + it_compact++; + } + } + } else { + // Implementation optimized for specific numbers of experts used: + static_assert(n_expert_used == 6 || warp_size % n_expert_used == 0, "bad n_expert_used"); + const int neu_padded = n_expert_used == 6 ? 8 : n_expert_used; // Padded to next higher power of 2. + for (int it0 = 0; it0 < n_tokens; it0 += warp_size/neu_padded) { + const int it = it0 + threadIdx.x / neu_padded; + + const int iex = threadIdx.x % neu_padded; // The index at which the expert is used, if any. + const int expert_used = (neu_padded == n_expert_used || iex < n_expert_used) && it < n_tokens ? + ids[it*si1 + iex] : INT_MAX; + const int iex_used = expert_used == expert ? iex : -1; + nex_prev += expert_used < expert; + + // Whether the threads at this token position have used the expert: + const int it_compact_add_self = warp_reduce_any(iex_used != -1); + + // Do a scan over threads at lower token positions in warp to get the correct index for writing data: + int it_compact_add_lower = 0; +#pragma unroll + for (int offset = neu_padded; offset < warp_size; offset += neu_padded) { + const int tmp = __shfl_up_sync(0xFFFFFFFF, it_compact_add_self, offset, warp_size); + if (threadIdx.x >= offset) { + it_compact_add_lower += tmp; + } + } + + if (iex_used != -1) { + store[it_compact + it_compact_add_lower] = mmq_ids_helper_store(it, iex_used); + } + + // The thread with the highest index in the warp always has the sum over the whole warp, use it to increment all threads: + it_compact += __shfl_sync(0xFFFFFFFF, it_compact_add_lower + it_compact_add_self, warp_size - 1, warp_size); + } + } + nex_prev = warp_reduce_sum(nex_prev); + + for (int itc = threadIdx.x; itc < it_compact; itc += warp_size) { + const mmq_ids_helper_store store_it = store[itc]; + const int it = store_it.it(); + const int iex_used = store_it.iex_used(); + ids_src1[nex_prev + itc] = it*sis1 + iex_used % nchannels_y; + ids_dst [nex_prev + itc] = it*n_expert_used + iex_used; + } + + if (threadIdx.x != 0) { + return; + } + + expert_bounds[expert] = nex_prev; + + if (expert < gridDim.x - 1) { + return; + } + + expert_bounds[gridDim.x] = nex_prev + it_compact; +} + +template +static void launch_mmq_ids_helper( + const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds, + const int n_experts, const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) { + GGML_ASSERT(n_tokens < (1 << 22) && "too few bits in mmq_ids_helper_store"); + GGML_ASSERT(n_expert_used_var < (1 << 10) && "too few bits in mmq_ids_helper_store"); + + const int id = ggml_cuda_get_device(); + const int warp_size = ggml_cuda_info().devices[id].warp_size; + const size_t smpbo = ggml_cuda_info().devices[id].smpbo; + CUDA_SET_SHARED_MEMORY_LIMIT(mmq_ids_helper, smpbo); + + const dim3 num_blocks(n_experts, 1, 1); + const dim3 block_size(warp_size, 1, 1); + const size_t nbytes_shared = n_tokens*sizeof(mmq_ids_helper_store); + GGML_ASSERT(nbytes_shared <= smpbo); + mmq_ids_helper<<>> + (ids, ids_src1, ids_dst, expert_bounds, n_tokens, n_expert_used_var, nchannels_y, si1, sis1); +} + static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { switch (args.type_x) { case GGML_TYPE_Q4_0: @@ -137,7 +271,7 @@ void ggml_cuda_mul_mat_q( ne00, ne01, ne1, s01, ne11, s1, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, - use_stream_k}; + use_stream_k, ne1}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); return; } @@ -148,53 +282,49 @@ void ggml_cuda_mul_mat_q( const int64_t n_expert_used = ids->ne[0]; const int64_t ne_get_rows = ne12 * n_expert_used; + GGML_ASSERT(ne1 == n_expert_used); - std::vector ids_host(ggml_nbytes(ids)); - std::vector ids_src1_host; - ids_src1_host.reserve(ne_get_rows); - std::vector ids_dst_host; - ids_dst_host.reserve(ne_get_rows); - std::vector tokens_per_expert_host(ne02); - std::vector expert_bounds_host(ne02 + 1); - ggml_cuda_pool_alloc ids_buf_dev(ctx.pool()); - - CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); - CUDA_CHECK(cudaStreamSynchronize(stream)); - - for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices - for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens - for (int64_t iex = 0; iex < n_expert_used; ++iex) { - const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]); - assert(expert_to_use >= 0 && expert_to_use < ne02); - if (expert_to_use == i02) { - ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11); - ids_dst_host.push_back(i12*ne1 + iex); - tokens_per_expert_host[i02]++; - break; - } - } - } - } + ggml_cuda_pool_alloc ids_src1(ctx.pool(), ne_get_rows); + ggml_cuda_pool_alloc ids_dst(ctx.pool(), ne_get_rows); + ggml_cuda_pool_alloc expert_bounds(ctx.pool(), ne02 + 1); - int32_t cumsum = 0; - for (int64_t i = 0; i < ne02; ++i) { - expert_bounds_host[i] = cumsum; - cumsum += tokens_per_expert_host[i]; + { + GGML_ASSERT(ids->nb[0] == ggml_element_size(ids)); + const int si1 = ids->nb[1] / ggml_element_size(ids); + const int sis1 = nb12 / nb11; + + switch (n_expert_used) { + case 2: + launch_mmq_ids_helper< 2> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 4: + launch_mmq_ids_helper< 4> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 6: + launch_mmq_ids_helper< 6> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 8: + launch_mmq_ids_helper< 8> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 16: + launch_mmq_ids_helper<16> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 32: + launch_mmq_ids_helper<32> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + default: + launch_mmq_ids_helper< 0> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + } + CUDA_CHECK(cudaGetLastError()); } - expert_bounds_host[ne02] = cumsum; - - std::vector ids_buf_host; - ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size()); - ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end()); - ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end()); - ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end()); - ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device. - CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream)); - CUDA_CHECK(cudaStreamSynchronize(stream)); - - const int32_t * ids_src1_dev = ids_buf_dev.ptr; - const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size(); - const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size(); const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 + get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq); @@ -208,7 +338,7 @@ void ggml_cuda_mul_mat_q( const int64_t s11 = src1->nb[1] / ts_src1; const int64_t s12 = src1->nb[2] / ts_src1; const int64_t s13 = src1->nb[2] / ts_src1; - quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type, + quantize_mmq_q8_1_cuda(src1_d, ids_src1.get(), src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream); CUDA_CHECK(cudaGetLastError()); } @@ -218,11 +348,11 @@ void ggml_cuda_mul_mat_q( // Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid. const mmq_args args = { - src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d, + src0_d, src0->type, (const int *) src1_q8_1.get(), ids_dst.get(), expert_bounds.get(), dst_d, ne00, ne01, ne_get_rows, s01, ne_get_rows, s1, ne02, ne02, s02, s12, s2, ne03, ne13, s03, s13, s3, - use_stream_k}; + use_stream_k, ne12}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); } @@ -262,7 +392,7 @@ void ggml_cuda_op_mul_mat_q( ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, - use_stream_k}; + use_stream_k, src1_ncols}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh index 650f7080677ad..c9a07e82fedf2 100644 --- a/ggml/src/ggml-cuda/mmq.cuh +++ b/ggml/src/ggml-cuda/mmq.cuh @@ -3138,7 +3138,8 @@ static __global__ void mul_mat_q( const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst, const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, - const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { + const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, + const int ncols_max) { // Skip unused template specializations for faster compilation: if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) { @@ -3152,7 +3153,7 @@ static __global__ void mul_mat_q( constexpr int qk = ggml_cuda_type_traits::qk; constexpr int mmq_y = get_mmq_y_device(); - const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x + const int ntx = (ncols_max + mmq_x - 1) / mmq_x; // Number of tiles x const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y // Initialize the ids for writing back data with just the index. @@ -3376,7 +3377,8 @@ template static __global__ void mul_mat_q_stream_k_fixup( const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst, - const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) { + const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst, + const int ncols_max) { constexpr int mmq_y = get_mmq_y_device(); constexpr int qk = ggml_cuda_type_traits::qk; constexpr int blocks_per_iter = MMQ_ITER_K / qk; @@ -3387,7 +3389,7 @@ static __global__ void mul_mat_q_stream_k_fixup( float sum[mmq_x*mmq_y / (nwarps*warp_size)] = {0.0f}; - const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; + const int ntx = (ncols_max + mmq_x - 1) / mmq_x; const int nty = (nrows_x + mmq_y - 1) / mmq_y; const int bidx0 = blockIdx.x; @@ -3528,7 +3530,7 @@ struct mmq_args { int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst; int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst; int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst; - bool use_stream_k; + bool use_stream_k; int64_t ncols_max; }; template @@ -3558,7 +3560,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q), nbytes_shared); const int nty = (args.nrows_x + mmq_y - 1) / mmq_y; - const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x; + const int ntx = (args.ncols_max + mmq_x - 1) / mmq_x; const int ntzw = args.nchannels_y * args.nsamples_y; const dim3 block_nums_xy_tiling(nty, ntx, ntzw); @@ -3574,14 +3576,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); } return; } @@ -3601,7 +3605,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); if (!fixup_needed) { return; @@ -3609,14 +3614,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a mul_mat_q_stream_k_fixup<<>> (args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, - args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst); + args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst, + args.ncols_max); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); if (!fixup_needed) { return; @@ -3624,7 +3631,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a mul_mat_q_stream_k_fixup<<>> (args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, - args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst); + args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst, + args.ncols_max); } } @@ -3649,7 +3657,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda continue; } - const int ntiles_x = (args.ncols_y + mmq_x - 1) / mmq_x; + const int ntiles_x = (args.ncols_max + mmq_x - 1) / mmq_x; if (ntiles_x < ntiles_x_best) { mmq_x_best = mmq_x; diff --git a/ggml/src/ggml-cuda/norm.cu b/ggml/src/ggml-cuda/norm.cu index bddcca51b7bfc..d5157d958b717 100644 --- a/ggml/src/ggml-cuda/norm.cu +++ b/ggml/src/ggml-cuda/norm.cu @@ -104,12 +104,30 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr } } -template -static __global__ void rms_norm_f32( - const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, - const int64_t stride_sample, const float eps, const float * mul = nullptr, const int64_t mul_stride_row = 0, - const int64_t mul_stride_channel = 0, const int64_t mul_stride_sample = 0, const int mul_ncols = 0, - const int mul_nrows = 0, const int mul_nchannels = 0, const int mul_nsamples = 0) { +template +static __global__ void rms_norm_f32(const float * x, float * dst, + const int ncols, + const int64_t stride_row, + const int64_t stride_channel, + const int64_t stride_sample, + const float eps, + const float * mul = nullptr, + const int64_t mul_stride_row = 0, + const int64_t mul_stride_channel = 0, + const int64_t mul_stride_sample = 0, + const int mul_ncols = 0, + const int mul_nrows = 0, + const int mul_nchannels = 0, + const int mul_nsamples = 0, + const float * add = nullptr, + const int64_t add_stride_row = 0, + const int64_t add_stride_channel = 0, + const int64_t add_stride_sample = 0, + const int add_ncols = 0, + const int add_nrows = 0, + const int add_nchannels = 0, + const int add_nsamples = 0) { + const int nrows = gridDim.x; const int nchannels = gridDim.y; @@ -118,6 +136,8 @@ static __global__ void rms_norm_f32( const int sample = blockIdx.z; const int tid = threadIdx.x; + static_assert(!do_add || do_multiply, "fusing add is not supported without multiplying"); + x += sample*stride_sample + channel*stride_channel + row*stride_row; dst += ((sample*nchannels + channel)*nrows + row)*ncols; @@ -128,6 +148,13 @@ static __global__ void rms_norm_f32( mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row; } + if constexpr (do_add) { + const int add_row = row % add_nrows; + const int add_channel = channel % add_nchannels; + const int add_sample = sample % add_nsamples; + add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row; + } + float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { @@ -154,7 +181,11 @@ static __global__ void rms_norm_f32( const float scale = rsqrtf(mean + eps); for (int col = tid; col < ncols; col += block_size) { - if constexpr (do_multiply) { + if constexpr (do_multiply && do_add) { + const int mul_col = col % mul_ncols; + const int add_col = col % add_ncols; + dst[col] = scale * x[col] * mul[mul_col] + add[add_col]; + } else if constexpr (do_multiply) { const int mul_col = col % mul_ncols; dst[col] = scale * x[col] * mul[mul_col]; } else { @@ -331,23 +362,70 @@ static void rms_norm_f32_cuda( } } -static void rms_norm_mul_f32_cuda( - const float * x, const float * mul, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples, - const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, - const int64_t mul_stride_row, const int64_t mul_stride_channel, const int64_t mul_stride_sample, - const int mul_ncols, const int mul_nrows, const int mul_nchannels, const int mul_nsamples, - const float eps, cudaStream_t stream) { +static void rms_norm_mul_f32_cuda(const float * x, + const float * mul, + const float * add, + float * dst, + const int ncols, + const int nrows, + const int nchannels, + const int nsamples, + const int64_t stride_row, + const int64_t stride_channel, + const int64_t stride_sample, + const int64_t mul_stride_row, + const int64_t mul_stride_channel, + const int64_t mul_stride_sample, + const int mul_ncols, + const int mul_nrows, + const int mul_nchannels, + const int mul_nsamples, + const int64_t add_stride_row, + const int64_t add_stride_channel, + const int64_t add_stride_sample, + const int add_ncols, + const int add_nrows, + const int add_nchannels, + const int add_nsamples, + const float eps, + cudaStream_t stream) { const dim3 blocks_num(nrows, nchannels, nsamples); if (mul == nullptr) { rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream); return; } - if (ncols < 1024) { - const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + if (add == nullptr) { + if (ncols < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + rms_norm_f32<<>>(x, dst, + ncols, stride_row, stride_channel, stride_sample, eps, + mul, mul_stride_row, mul_stride_channel, mul_stride_sample, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + } else { + const dim3 block_dims(1024, 1, 1); + rms_norm_f32<1024, true><<>>(x, dst, + ncols, stride_row, stride_channel, stride_sample, eps, + mul, mul_stride_row, mul_stride_channel, mul_stride_sample, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + } } else { - const dim3 block_dims(1024, 1, 1); - rms_norm_f32<1024, true><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); + if (ncols < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + rms_norm_f32<<>>(x, dst, + ncols, stride_row, stride_channel, stride_sample, eps, + mul, mul_stride_row, mul_stride_channel, mul_stride_sample, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, + add, add_stride_row, add_stride_channel, add_stride_sample, + add_ncols, add_nrows, add_nchannels, add_nsamples); + } else { + const dim3 block_dims(1024, 1, 1); + rms_norm_f32<1024, true, true><<>>(x, dst, + ncols, stride_row, stride_channel, stride_sample, eps, + mul, mul_stride_row, mul_stride_channel, mul_stride_sample, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, + add, add_stride_row, add_stride_channel, add_stride_sample, + add_ncols, add_nrows, add_nchannels, add_nsamples); + } } } @@ -491,7 +569,102 @@ void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * const int mul_nchannels = mul_src->ne[2]; const int mul_nsamples = mul_src->ne[3]; - rms_norm_mul_f32_cuda(src0_d, mul_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, mul_s01, mul_s02, mul_s03, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, eps, stream); + rms_norm_mul_f32_cuda(src0_d, mul_d, nullptr, dst_d, + ne00, ne01, ne02, ne03, + /*s00*/ s01, s02, s03, + /*mul_s00*/ mul_s01, mul_s02, mul_s03, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, + /*add_s00*/ 0, 0, 0, + 0, 0, 0, 0, + eps, stream); +} + +void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx, + ggml_tensor * dst, + ggml_tensor * mul_tensor, + ggml_tensor * add_tensor) { + const ggml_tensor * rms_norm_src = (ggml_tensor *) dst->src[0]; + float eps = 0.0f; + + memcpy(&eps, dst->op_params, sizeof(float)); + + const float * src0_d = (const float *) rms_norm_src->data; + const float * mul_d = nullptr; + const ggml_tensor * mul_src = nullptr; + + if (mul_tensor->src[0] == dst) { + mul_d = (float *) mul_tensor->src[1]->data; + mul_src = mul_tensor->src[1]; + } else if (mul_tensor->src[1] == dst) { + mul_d = (float *) mul_tensor->src[0]->data; + mul_src = mul_tensor->src[0]; + } else { + GGML_ASSERT(false); + } + + const float * add_d = nullptr; + const ggml_tensor * add_src = nullptr; + + if (add_tensor->src[0] == mul_tensor) { + add_d = (float *) add_tensor->src[1]->data; + add_src = add_tensor->src[1]; + } else if (add_tensor->src[1] == mul_tensor) { + add_d = (float *) add_tensor->src[0]->data; + add_src = add_tensor->src[0]; + } else { + GGML_ASSERT(false); + } + + float * dst_d = (float *) add_tensor->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(rms_norm_src->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(mul_tensor->type == GGML_TYPE_F32); + GGML_ASSERT(add_tensor->type == GGML_TYPE_F32); + GGML_ASSERT(eps >= 0.0f); + + const int64_t ne00 = rms_norm_src->ne[0]; + const int64_t ne01 = rms_norm_src->ne[1]; + const int64_t ne02 = rms_norm_src->ne[2]; + const int64_t ne03 = rms_norm_src->ne[3]; + + const size_t ts0 = ggml_type_size(rms_norm_src->type); + GGML_ASSERT(rms_norm_src->nb[0] == ts0); + const int64_t s01 = rms_norm_src->nb[1] / ts0; + const int64_t s02 = rms_norm_src->nb[2] / ts0; + const int64_t s03 = rms_norm_src->nb[3] / ts0; + + const size_t ts_mul = ggml_type_size(mul_src->type); + GGML_ASSERT(mul_src->nb[0] == ts_mul); + const int64_t mul_s01 = mul_src->nb[1] / ts_mul; + const int64_t mul_s02 = mul_src->nb[2] / ts_mul; + const int64_t mul_s03 = mul_src->nb[3] / ts_mul; + + const int mul_ncols = mul_src->ne[0]; + const int mul_nrows = mul_src->ne[1]; + const int mul_nchannels = mul_src->ne[2]; + const int mul_nsamples = mul_src->ne[3]; + + const size_t ts_add = ggml_type_size(add_src->type); + GGML_ASSERT(add_src->nb[0] == ts_add); + const int64_t add_s01 = add_src->nb[1] / ts_add; + const int64_t add_s02 = add_src->nb[2] / ts_add; + const int64_t add_s03 = add_src->nb[3] / ts_add; + + const int add_ncols = add_src->ne[0]; + const int add_nrows = add_src->ne[1]; + const int add_nchannels = add_src->ne[2]; + const int add_nsamples = add_src->ne[3]; + + rms_norm_mul_f32_cuda(src0_d, mul_d,add_d,dst_d, + ne00,ne01, ne02, ne03, + /*s00*/ s01, s02, s03, + /*mul_s00*/ mul_s01, mul_s02, mul_s03, + mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, + /*add_s00*/ add_s01, add_s02, add_s03, + add_ncols, add_nrows, add_nchannels, add_nsamples, + eps, stream); } void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-cuda/norm.cuh b/ggml/src/ggml-cuda/norm.cuh index 7ea7bd4df3cc6..a74f6376720ab 100644 --- a/ggml/src/ggml-cuda/norm.cuh +++ b/ggml/src/ggml-cuda/norm.cuh @@ -8,6 +8,11 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor); +void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx, + ggml_tensor * dst, + ggml_tensor * mul_tensor, + ggml_tensor * add_tensor); + void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/ssm-scan.cu b/ggml/src/ggml-cuda/ssm-scan.cu index dc9a7d58d057c..6b424381df5a7 100644 --- a/ggml/src/ggml-cuda/ssm-scan.cu +++ b/ggml/src/ggml-cuda/ssm-scan.cu @@ -129,7 +129,7 @@ __global__ void __launch_bounds__(d_state, 1) const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float); const int seq_idx = blockIdx.y; - const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float); + const int group_off = (head_idx / (n_head / n_group)) * d_state * sizeof(float); const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state); const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float)); diff --git a/ggml/src/ggml-cuda/vecdotq.cuh b/ggml/src/ggml-cuda/vecdotq.cuh index d60292b83b106..6baab1176ffe1 100644 --- a/ggml/src/ggml-cuda/vecdotq.cuh +++ b/ggml/src/ggml-cuda/vecdotq.cuh @@ -28,7 +28,58 @@ static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32 return ((const int *) x)[i32]; // assume at least 4 byte alignment } +// q4 contains 8 indices with 4 bit each. +// This function selects those bytes from table that are at those indices and returns them as int2. +// The first int contains the bytes with even indices in q4, the second int contains the bytes with odd indices in q4. static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, const int8_t * table) { +#if defined(GGML_USE_HIP) + // Load the 16-byte table into four 32-bit unsigned integers. + const uint32_t *values = (const uint32_t *)table; + + const uint32_t q_even = q4; + const uint32_t q_odd = (q4 >> 4); + + // Perform lookups in the lower half of the table (indices 0-7). + uint32_t v_even_low = __builtin_amdgcn_perm(values[1], values[0], q_even & 0x07070707); + uint32_t v_odd_low = __builtin_amdgcn_perm(values[1], values[0], q_odd & 0x07070707); + + // Perform lookups in the upper half of the table (indices 8-15). + uint32_t v_even_high = __builtin_amdgcn_perm(values[3], values[2], q_even & 0x07070707); + uint32_t v_odd_high = __builtin_amdgcn_perm(values[3], values[2], q_odd & 0x07070707); + + // Select between the low and high results based on the MSB of each index nibble. + uint32_t mask_even = 0x03020100 | ((q_even & 0x08080808) >> 1); + uint32_t res_x = __builtin_amdgcn_perm(v_even_high, v_even_low, mask_even); + uint32_t mask_odd = 0x03020100 | ((q_odd & 0x08080808) >> 1); + uint32_t res_y = __builtin_amdgcn_perm(v_odd_high, v_odd_low, mask_odd); + + return make_int2(res_x, res_y); +#elif !defined(GGML_USE_MUSA) + // CUDA does not have an instruction for selecting bytes with 4 bit indices. + // However, __byte_perm is an instruction that selects bytes with 3 bit indices that can be used instead. + const uint32_t * table32 = (const uint32_t *) table; + + // __byte_perm selects bytes based on the lower 16 bits in its third argument. + // Therefore, do 2 iterations over the 32 bits in q4 with 0 and 16 shift. + // To handle the fourth bit, first call _byte_perm both for the low and the high 64 bit of table, using the low 3 bits. + // Then, call __byte_perm again to select from the low and high bytes based on the fourth bit. + uint32_t tmp[2]; + const uint32_t low_high_selection_indices = (0x32103210 | ((q4 & 0x88888888) >> 1)); +#pragma unroll + for (uint32_t i = 0; i < 2; ++i) { + const uint32_t shift = 16 * i; + + const uint32_t low = __byte_perm(table32[0], table32[1], q4 >> shift); + const uint32_t high = __byte_perm(table32[2], table32[3], q4 >> shift); + tmp[i] = __byte_perm(low, high, low_high_selection_indices >> shift); + } + + // tmp contains the bytes from tyble in the same order as the 4 bit indices in q4. + // However, for the result we need ints with all even/odd 4 bit indices in q4. + // Therefore, 2 more calls to __byte_perm to put the bytes in the correct order. + return make_int2(__byte_perm(tmp[0], tmp[1], 0x6420), __byte_perm(tmp[0], tmp[1], 0x7531)); +#else + // Generic implementation. const int q0_32 = (q4 >> 0) & 0x0F0F0F0F; const int8_t * q0_8 = (const int8_t *) &q0_32; const char4 val0_8 = make_char4( @@ -40,6 +91,7 @@ static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, con table[q1_8[0]], table[q1_8[1]], table[q1_8[2]], table[q1_8[3]]); return make_int2(*((const int *) &val0_8), *((const int *) &val1_8)); +#endif } // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h index 6e9c67aca096e..c6a33d5de310f 100644 --- a/ggml/src/ggml-cuda/vendors/hip.h +++ b/ggml/src/ggml-cuda/vendors/hip.h @@ -22,7 +22,10 @@ #define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite #define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }} #define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width) +#define __shfl_up_sync(mask, var, laneMask, width) __shfl_up(var, laneMask, width) #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width) +#define __all_sync(mask, var) __all(var) +#define __any_sync(mask, var) __any(var) #define cublasCreate hipblasCreate #define cublasDestroy hipblasDestroy #define cublasGemmEx hipblasGemmEx diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index fc6526d6d5dc6..b9d3639448500 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -249,6 +249,7 @@ typedef struct { uint64_t nb33; int32_t ne1; int32_t ne2; + int32_t ne3; float scale; float max_bias; float m0; @@ -257,6 +258,11 @@ typedef struct { float logit_softcap; } ggml_metal_kargs_flash_attn_ext; +typedef struct { + int32_t nrows; + int32_t ne20; +} ggml_metal_kargs_flash_attn_ext_reduce; + typedef struct { int32_t ne00; int32_t ne02; @@ -320,40 +326,31 @@ typedef struct { } ggml_metal_kargs_mul_mv_ext; typedef struct { + int32_t ne02; int32_t ne10; int32_t ne11; // n_expert_used (bcast) uint64_t nb11; uint64_t nb12; - int32_t neh11; // n_tokens - uint64_t nbh11; + int32_t ne21; // n_tokens int32_t ne20; // n_expert_used uint64_t nb21; } ggml_metal_kargs_mul_mm_id_map0; -typedef struct { - int32_t ne20; // n_expert_used - int32_t neh0; - int32_t neh1; - uint64_t nbh1; - uint64_t nbh2; - int32_t ne0; - uint64_t nb1; - uint64_t nb2; -} ggml_metal_kargs_mul_mm_id_map1; - typedef struct { int32_t ne00; int32_t ne02; uint64_t nb01; uint64_t nb02; uint64_t nb03; - int32_t neh12; - uint64_t nbh10; - uint64_t nbh11; - uint64_t nbh12; - uint64_t nbh13; - int32_t neh0; - int32_t neh1; + int32_t ne11; + uint64_t nb10; + uint64_t nb11; + uint64_t nb12; + uint64_t nb13; + int32_t ne20; + int32_t ne21; + int32_t ne0; + int32_t ne1; int16_t r2; int16_t r3; } ggml_metal_kargs_mul_mm_id; diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index 7c70d352dfddf..3d16a1dcd461e 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -93,35 +93,37 @@ if (ctx->mtl_device == nil) { ctx->mtl_device = MTLCreateSystemDefaultDevice(); - ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; - ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; + if (ctx->mtl_device) { + ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; + ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; - ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; + ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; #if defined(GGML_METAL_HAS_RESIDENCY_SETS) - ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil; + ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil; #endif - ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; - ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6]; + ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; + ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6]; #if defined(GGML_METAL_USE_BF16) - ctx->use_bfloat = ctx->has_bfloat; + ctx->use_bfloat = ctx->has_bfloat; #else - ctx->use_bfloat = false; + ctx->use_bfloat = false; #endif - ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil; + ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil; - { - const char * val = getenv("GGML_METAL_FUSION_DEBUG"); - ctx->debug_fusion = val ? atoi(val) : 0; - } + { + const char * val = getenv("GGML_METAL_FUSION_DEBUG"); + ctx->debug_fusion = val ? atoi(val) : 0; + } - memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt)); + memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt)); - ctx->max_size = ctx->mtl_device.maxBufferLength; + ctx->max_size = ctx->mtl_device.maxBufferLength; - strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1); + strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1); + } } ctx->mtl_device_ref_count++; @@ -289,6 +291,10 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2, + GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3, + GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4, + GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5, GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, @@ -396,8 +402,12 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, - GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16, - GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, @@ -443,6 +453,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, @@ -452,6 +463,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, @@ -461,6 +473,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, @@ -470,6 +483,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, @@ -479,6 +493,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, @@ -488,6 +503,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, @@ -497,6 +513,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, @@ -555,6 +572,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE, GGML_METAL_KERNEL_TYPE_SET_I32, GGML_METAL_KERNEL_TYPE_SET_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F32, @@ -1304,6 +1322,10 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, mul_mv_mxfp4_f32, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2, mul_mv_ext_f32_f32_r1_2, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3, mul_mv_ext_f32_f32_r1_3, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4, mul_mv_ext_f32_f32_r1_4, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5, mul_mv_ext_f32_f32_r1_5, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, mul_mv_ext_f16_f32_r1_2, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, mul_mv_ext_f16_f32_r1_3, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, mul_mv_ext_f16_f32_r1_4, has_simdgroup_reduction); @@ -1412,8 +1434,12 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16, mul_mm_id_map0_f16, has_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32, mul_mm_id_map1_f32, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1, mul_mm_id_map0_f16_ne20_1, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2, mul_mm_id_map0_f16_ne20_2, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat); @@ -1459,6 +1485,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40, flash_attn_ext_f16_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, has_simdgroup_mm); @@ -1468,6 +1495,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128, flash_attn_ext_f16_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512, flash_attn_ext_f16_hk576_hv512, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40, flash_attn_ext_bf16_h40, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, flash_attn_ext_bf16_h64, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, flash_attn_ext_bf16_h80, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, flash_attn_ext_bf16_h96, has_simdgroup_mm && use_bfloat); @@ -1477,6 +1505,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128, flash_attn_ext_bf16_hk192_hv128, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, flash_attn_ext_bf16_h256, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512, flash_attn_ext_bf16_hk576_hv512, has_simdgroup_mm && use_bfloat); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40, flash_attn_ext_q4_0_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, has_simdgroup_mm); @@ -1486,6 +1515,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128, flash_attn_ext_q4_0_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512, flash_attn_ext_q4_0_hk576_hv512, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40, flash_attn_ext_q4_1_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, has_simdgroup_mm); @@ -1495,6 +1525,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128, flash_attn_ext_q4_1_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512, flash_attn_ext_q4_1_hk576_hv512, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40, flash_attn_ext_q5_0_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, has_simdgroup_mm); @@ -1504,6 +1535,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128, flash_attn_ext_q5_0_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512, flash_attn_ext_q5_0_hk576_hv512, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40, flash_attn_ext_q5_1_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, has_simdgroup_mm); @@ -1513,6 +1545,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128, flash_attn_ext_q5_1_hk192_hv128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512, flash_attn_ext_q5_1_hk576_hv512, has_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40, flash_attn_ext_q8_0_h40, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, has_simdgroup_mm); @@ -1571,6 +1604,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512, flash_attn_ext_vec_q5_0_hk576_hv512, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512, flash_attn_ext_vec_q5_1_hk576_hv512, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512, flash_attn_ext_vec_q8_0_hk576_hv512, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE, flash_attn_ext_reduce, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_F32, set_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_I32, set_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); @@ -1846,7 +1880,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex case GGML_OP_ROPE: return true; case GGML_OP_IM2COL: - return op->src[1]->type == GGML_TYPE_F32 && (op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32); + return ggml_is_contiguous(op->src[1]) && op->src[1]->type == GGML_TYPE_F32 && (op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32); case GGML_OP_POOL_1D: return false; case GGML_OP_UPSCALE: @@ -1861,9 +1895,15 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex case GGML_OP_ARANGE: return true; case GGML_OP_FLASH_ATTN_EXT: - if (op->src[0]->ne[0] == 32) { - // head size == 32 (e.g. bert-bge-small) - // TODO: not sure if it is worth adding kernels for this size + // for new head sizes, add checks here + if (op->src[0]->ne[0] != 40 && + op->src[0]->ne[0] != 64 && + op->src[0]->ne[0] != 80 && + op->src[0]->ne[0] != 96 && + op->src[0]->ne[0] != 112 && + op->src[0]->ne[0] != 128 && + op->src[0]->ne[0] != 192 && + op->src[0]->ne[0] != 256) { return false; } if (op->src[0]->ne[0] == 576) { @@ -3347,15 +3387,16 @@ static int ggml_metal_encode_node( // find the break-even point where the matrix-matrix kernel becomes more efficient compared // to the matrix-vector kernel - const int ne11_mm_min = 4; + const int ne11_mm_min = 8; // first try to use small-batch mat-mv kernels // these should be efficient for BS [2, ~8] - if (src1t == GGML_TYPE_F32 && (ne00%256 == 0) && + if (src1t == GGML_TYPE_F32 && (ne00%128 == 0) && ( ( ( - src0t == GGML_TYPE_F16 || // TODO: helper function + src0t == GGML_TYPE_F32 || // TODO: helper function + src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || @@ -3383,7 +3424,17 @@ static int ggml_metal_encode_node( // values and there can be some tail effects when nsg is high. need to confirm this // const int nsg = 2; // num simdgroups per threadgroup - const int nxpsg = ne11 < 3 ? 16 : 8; // num threads along row per simdgroup + + // num threads along row per simdgroup + int nxpsg = 0; + if (ne00 % 256 == 0 && ne11 < 3) { + nxpsg = 16; + } else if (ne00 % 128 == 0) { + nxpsg = 8; + } else { + nxpsg = 4; + } + const int nypsg = 32/nxpsg; // num threads along col per simdgroup (i.e. a simdgroup processes that many src0 rows at a time) const int r0ptg = nypsg*nsg; // num src0 rows per threadgroup int r1ptg = 4; // num src1 rows per threadgroup @@ -3406,6 +3457,14 @@ static int ggml_metal_encode_node( id pipeline = nil; switch (src0->type) { + case GGML_TYPE_F32: + switch (r1ptg) { + case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2].pipeline; break; + case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3].pipeline; break; + case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4].pipeline; break; + case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5].pipeline; break; + default: GGML_ABORT("not implemented"); + } break; case GGML_TYPE_F16: switch (r1ptg) { case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2].pipeline; break; @@ -3560,7 +3619,7 @@ static int ggml_metal_encode_node( case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; - case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break; + case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break; case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; @@ -3878,38 +3937,6 @@ static int ggml_metal_encode_node( default: break; } - const int64_t neh10 = ne10; // n_embd - const int64_t neh11 = ne21; // n_tokens - const int64_t neh12 = ne02; // n_expert - - const uint64_t nbh10 = ggml_type_size(GGML_TYPE_F16); - const uint64_t nbh11 = nbh10*neh10; - const uint64_t nbh12 = nbh11*neh11; - const uint64_t nbh13 = nbh12*neh12; - - const size_t s_src1 = ggml_type_size(GGML_TYPE_F16)*neh10*neh11*neh12; - id h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1); - if (!h_src1) { - GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1); - return 0; - } - - const int64_t neh0 = ne0; - const int64_t neh1 = ne21; - const int64_t neh2 = ne02; - - const uint64_t nbh0 = ggml_type_size(GGML_TYPE_F32); - const uint64_t nbh1 = nbh0*neh0; - const uint64_t nbh2 = nbh1*neh1; - //const uint64_t nbh3 = nbh2*neh2; - - const size_t s_dst = ggml_type_size(GGML_TYPE_F32)*neh0*neh1*neh2; - id h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst); - if (!h_dst) { - GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst); - return 0; - } - // tokens per expert const size_t s_tpe = ggml_type_size(GGML_TYPE_I32)*ne02; id h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe); @@ -3919,8 +3946,8 @@ static int ggml_metal_encode_node( } // id map - // [n_expert_used, n_tokens] - const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne20*ne21; + // [n_tokens, n_expert] + const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne21*ne02; id h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids); if (!h_ids) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids); @@ -3928,32 +3955,45 @@ static int ggml_metal_encode_node( } { - const int nth = MIN(1024, ne10/4); - ggml_metal_kargs_mul_mm_id_map0 args = { + ne02, ne10, - ne11, // n_expert_used (bcast) + ne11, // n_expert_used (bcast) nb11, nb12, - neh11, // n_tokens - nbh11, - ne20, // n_expert_used + ne21, // n_tokens + ne20, // n_expert_used nb21, }; id pipeline = nil; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16].pipeline; + pipeline = nil; + + switch (ne20) { + case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1 ].pipeline; break; + case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2 ].pipeline; break; + case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break; + case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break; + case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break; + case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break; + default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20); + } + + GGML_ASSERT(ne02 <= (int) pipeline.maxTotalThreadsPerThreadgroup); + + const size_t smem = ne02*ne20*sizeof(uint16_t); + + GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); [encoder setComputePipelineState:pipeline]; [encoder setBytes:&args length:sizeof(args) atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; - [encoder setBuffer: h_src1 offset:0 atIndex:3]; - [encoder setBuffer: h_tpe offset:0 atIndex:4]; - [encoder setBuffer: h_ids offset:0 atIndex:5]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:1]; + [encoder setBuffer: h_tpe offset:0 atIndex:2]; + [encoder setBuffer: h_ids offset:0 atIndex:3]; + [encoder setThreadgroupMemoryLength:smem atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(ne02, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(ne02, 1, 1)]; } { @@ -3992,13 +4032,15 @@ static int ggml_metal_encode_node( /*.nb01 =*/ nb01, /*.nb02 =*/ nb02, /*.nb03 =*/ nb03, - /*.neh12 =*/ neh12, - /*.nbh10 =*/ nbh10, - /*.nbh11 =*/ nbh11, - /*.nbh12 =*/ nbh12, - /*.nbh13 =*/ nbh13, - /*.neh0 =*/ neh0, - /*.neh1 =*/ neh1, + /*.ne11 =*/ ne11, // n_expert_used (bcast) + /*.nb10 =*/ nb10, + /*.nb11 =*/ nb11, + /*.nb12 =*/ nb12, + /*.nb13 =*/ nb13, + /*.ne20 =*/ ne20, // n_expert_used + /*.ne21 =*/ ne21, // n_tokens + /*.ne0 =*/ ne0, + /*.ne1 =*/ ne1, /*.r2 =*/ r2, /*.r3 =*/ r3, }; @@ -4006,42 +4048,14 @@ static int ggml_metal_encode_node( [encoder setComputePipelineState:pipeline]; [encoder setBytes:&args length:sizeof(args) atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; - [encoder setBuffer: h_src1 offset:0 atIndex:2]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2]; [encoder setBuffer: h_tpe offset:0 atIndex:3]; - [encoder setBuffer: h_dst offset:0 atIndex:4]; + [encoder setBuffer: h_ids offset:0 atIndex:4]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:5]; [encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } - - { - GGML_ASSERT(ne0 % 4 == 0); - - const int nth = MIN(1024, ne0/4); - - ggml_metal_kargs_mul_mm_id_map1 args = { - ne20, // n_expert_used - neh0, - neh1, - nbh1, - nbh2, - ne0, - nb1, - nb2, - }; - - id pipeline = nil; - - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBytes:&args length:sizeof(args) atIndex:0]; - [encoder setBuffer: h_dst offset:0 atIndex:1]; - [encoder setBuffer: h_ids offset:0 atIndex:2]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne20, ne21, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } } else { id pipeline = nil; @@ -4701,7 +4715,6 @@ static int ggml_metal_encode_node( } break; case GGML_OP_IM2COL: { - GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); @@ -5117,10 +5130,8 @@ static int ggml_metal_encode_node( bool use_vec_kernel = false; - // TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0) - // for now avoiding mainly to keep the number of templates/kernels a bit lower - // these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612 - if (ne01 >= 20 || (ne00%128 != 0 && ne00 != 64 && ne00 != 96 && ne00 != 192 && ne00 != 576)) { + // use non-vec kernel if the batch size is large or if the vec-kernel is not supported for this head size + if (ne01 >= 20 || (ne00 == 40 || ne00 == 80 || ne00 == 112)) { switch (src1->type) { case GGML_TYPE_F16: { @@ -5130,6 +5141,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; @@ -5154,6 +5166,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96 ].pipeline; break; @@ -5178,6 +5191,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96 ].pipeline; break; @@ -5202,6 +5216,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96 ].pipeline; break; @@ -5226,6 +5241,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96 ].pipeline; break; @@ -5250,6 +5266,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96 ].pipeline; break; @@ -5274,6 +5291,7 @@ static int ggml_metal_encode_node( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512].pipeline; } else { switch (ne00) { + case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40 ].pipeline; break; case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96 ].pipeline; break; @@ -5465,6 +5483,7 @@ static int ggml_metal_encode_node( /*.nb33 =*/ nb33, /*.ne1 =*/ ne1, /*.ne2 =*/ ne2, + /*.ne3 =*/ ne3, /*.scale =*/ scale, /*.max_bias =*/ max_bias, /*.m0 =*/ m0, @@ -5488,7 +5507,6 @@ static int ggml_metal_encode_node( } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:5]; } - [encoder setBuffer:id_dst offset:offs_dst atIndex:6]; if (!use_vec_kernel) { // half8x8 kernel @@ -5514,7 +5532,7 @@ static int ggml_metal_encode_node( while (true) { const size_t smem = FATTN_SMEM(nsgmax); - if (smem > device.maxThreadgroupMemoryLength) { + if (smem > device.maxThreadgroupMemoryLength/2) { break; } nsgmax *= 2; @@ -5526,15 +5544,18 @@ static int ggml_metal_encode_node( const size_t smem = FATTN_SMEM(nsg); + [encoder setBuffer:id_dst offset:offs_dst atIndex:6]; + //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); [encoder setThreadgroupMemoryLength:smem atIndex:0]; -#undef FATTN_SMEM [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; +#undef FATTN_SMEM } else { // half4x4 kernel const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !! const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !! + const int64_t nkpsg = 1*ncpsg; // TODO: make adjustable GGML_ASSERT(nqptg <= 32); GGML_ASSERT(nqptg % 1 == 0); @@ -5544,15 +5565,17 @@ static int ggml_metal_encode_node( // for each query, we load it as f16 in shared memory (ne00) // and store the soft_max values and the mask // - // ne00*(nsg) + // ne20*(nsg) // each simdgroup has a full f32 head vector in shared mem to accumulate results // #define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*ne20*(nsg))*(sizeof(float)/2), 16)) +//#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)))*(sizeof(float)/2), 16)) int64_t nsgmax = 2; while (true) { const size_t smem = FATTN_SMEM(nsgmax); - if (smem > device.maxThreadgroupMemoryLength) { + // avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes + if (smem > device.maxThreadgroupMemoryLength/2) { break; } nsgmax *= 2; @@ -5560,7 +5583,7 @@ static int ggml_metal_encode_node( nsgmax /= 2; // simdgroups per threadgroup (a.k.a. warps) - const int64_t nsgt = MAX(2, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))); + const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))); int64_t nsg = 1; while (nsg <= nsgt) { @@ -5568,13 +5591,74 @@ static int ggml_metal_encode_node( } nsg /= 2; - const size_t smem = FATTN_SMEM(nsg); + // workgroups + // each workgroup handles nsg*nkpsg cache values + uint16_t nwg = 1; + if (4*nsg*nkpsg >= ne11) { + const size_t smem = FATTN_SMEM(nsg); - //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); - GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); - [encoder setThreadgroupMemoryLength:smem atIndex:0]; + //printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, (int) nsgmax); + GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); + + // using 1 workgroup -> write the result directly into dst + [encoder setBuffer:id_dst offset:offs_dst atIndex:6]; + [encoder setBytes:&nwg length:sizeof(uint16_t) atIndex:7]; + + [encoder setThreadgroupMemoryLength:smem atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + } else { + nwg = 32; + nsg = MIN(4, nsg); + + const size_t smem = FATTN_SMEM(nsg); + + //printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, (int) nsgmax); + GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); + + // sanity checks + GGML_ASSERT(ne01*ne02*ne03 == ne1*ne2*ne3); + GGML_ASSERT(ne1*ne2*ne3 <= (1u << 31)); + + const int32_t nrows = ne1*ne2*ne3; + + // temp buffer for writing the results from each workgroup + // - ne20: the size of the head vector + // - + 2: the S and M values for each intermediate result + const size_t s_tmp = ggml_type_size(GGML_TYPE_F32)*(nrows*nwg*(ne20 + 2)); + id h_tmp = ggml_metal_mem_pool_alloc(mem_pool, s_tmp); + if (!h_tmp) { + GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tmp); + return 0; + } + + //printf("ne01 = %d, ne02 = %d, ne03 = %d, ne20 = %d\n", ne01, ne02, ne03, ne20); + //printf("needed memory: %.3f MiB\n", (float) (ne01*ne02*ne03*ne20*sizeof(float))/1024.0f/1024.0f); + + [encoder setBuffer:h_tmp offset:0 atIndex:6]; + [encoder setBytes:&nwg length:sizeof(uint16_t) atIndex:7]; + + [encoder setThreadgroupMemoryLength:smem atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + + // reduce the results from the workgroups + { + ggml_metal_kargs_flash_attn_ext_reduce args0 = { + nrows, + ne20, + }; + + id pipeline0 = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE].pipeline; + + [encoder setComputePipelineState:pipeline0]; + [encoder setBytes:&args0 length:sizeof(args0) atIndex:0]; + [encoder setBuffer:h_tmp offset:0 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + + //printf("ne1 = %d, ne2 = %d, ne3 = %d, ne20 = %d\n", ne1, ne2, ne3, ne20); + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(32*32, 1, 1)]; + } + } #undef FATTN_SMEM - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; } } break; case GGML_OP_DUP: diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index b35a3bbdc317f..9c5933d24a0e3 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -68,6 +68,11 @@ void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) reg = (type4x4)(*src); } +template +void dequantize_f32_t4(device const float4 * src, short il, thread type4 & reg) { + reg = (type4)(*src); +} + template void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { reg = (type4x4)(*src); @@ -974,9 +979,16 @@ kernel void kernel_mul( device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0]; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; - for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { - const int i10 = i0%args.ne10; - *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10)); + if (args.ne10 == 1) { + const float x = *((device float *)(src1_ptr)); + for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { + *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x; + } + } else { + for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { + const int i10 = i0%args.ne10; + *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10)); + } } } @@ -1000,9 +1012,16 @@ kernel void kernel_div( device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0]; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; - for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { - const int i10 = i0%args.ne10; - *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10)); + if (args.ne10 == 1) { + const float x = 1.0f / *((device float *)(src1_ptr)); + for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { + *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x; + } + } else { + for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { + const int i10 = i0%args.ne10; + *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10)); + } } } @@ -1964,14 +1983,15 @@ kernel void kernel_ssm_scan_f32( device const float * s0_buff = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03); device float * s_buff = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off); const int64_t i = i0 + i1*nc; + const int64_t g = ir / (nh / ng); // repeat_interleave float s0 = s0_buff[i]; float s = s_buff[i]; device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); device const float * x_block = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i3*args.nb13); device const float * dt_block = (device const float *) ((device const char *) src2 + ir*nb20 + i3*args.nb22); - device const float * B_block = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i3*args.nb43); - device const float * C_block = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i3*args.nb53); + device const float * B_block = (device const float *) ((device const char *) src4 + g*args.nb41 + i3*args.nb43); + device const float * C_block = (device const float *) ((device const char *) src5 + g*args.nb51 + i3*args.nb53); device float * y_block = (device float *) ((device char *) dst + (i1 + ir*(nr) + i3*(n_t*nh*nr))*nb00); for (int64_t i2 = 0; i2 < n_t; ++i2) { @@ -2079,14 +2099,15 @@ kernel void kernel_ssm_scan_f32_group( device const float * s0_buff = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03); device float * s_buff = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off); const int64_t i = i0 + i1*nc; + const int64_t g = ir / (nh / ng); // repeat_interleave float s0 = s0_buff[i]; float s = s_buff[i]; device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); // {1, nh} device const float * x_block = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i3*args.nb13); device const float * dt_block = (device const float *) ((device const char *) src2 + ir*nb20 + i3*args.nb22); - device const float * B_block = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i3*args.nb43); - device const float * C_block = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i3*args.nb53); + device const float * B_block = (device const float *) ((device const char *) src4 + g*args.nb41 + i3*args.nb43); + device const float * C_block = (device const float *) ((device const char *) src5 + g*args.nb51 + i3*args.nb53); device float * y_block = (device float *) ((device char *) dst + (i1 + ir*(nr) + i3*(n_t*nh*nr))*nb00); for (int64_t i2 = 0; i2 < n_t; ++i2) { @@ -3001,7 +3022,6 @@ void kernel_mul_mv_ext_q4_f32_impl( #pragma unroll(r1ptg) for (short ir1 = 0; ir1 < r1ptg; ++ir1) { sumf[ir1] += dot(lx[ch], y4[ir1][ch*nxpsg]); - } } @@ -3186,6 +3206,11 @@ kernel void kernel_mul_mv_ext_q4x4_f32_disp( typedef decltype(kernel_mul_mv_ext_q4_f32_disp <2, block_q8_0, 32, dequantize_q8_0_t4>) mul_mv_ext_q4_f32_t; typedef decltype(kernel_mul_mv_ext_q4x4_f32_disp<2, block_q4_K, 256, dequantize_q4_K>) mul_mv_ext_q4x4_f32_t; +template [[host_name("kernel_mul_mv_ext_f32_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, float4, 4, dequantize_f32_t4>; +template [[host_name("kernel_mul_mv_ext_f32_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, float4, 4, dequantize_f32_t4>; +template [[host_name("kernel_mul_mv_ext_f32_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, float4, 4, dequantize_f32_t4>; +template [[host_name("kernel_mul_mv_ext_f32_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, float4, 4, dequantize_f32_t4>; + template [[host_name("kernel_mul_mv_ext_f16_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, half4, 4, dequantize_f16_t4>; template [[host_name("kernel_mul_mv_ext_f16_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, half4, 4, dequantize_f16_t4>; template [[host_name("kernel_mul_mv_ext_f16_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, half4, 4, dequantize_f16_t4>; @@ -4663,6 +4688,7 @@ kernel void kernel_flash_attn_ext( typedef decltype(kernel_flash_attn_ext) flash_attn_ext_t; +template [[host_name("kernel_flash_attn_ext_f16_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4674,6 +4700,7 @@ template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #if defined(GGML_METAL_USE_BF16) +template [[host_name("kernel_flash_attn_ext_bf16_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4685,6 +4712,7 @@ template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #endif +template [[host_name("kernel_flash_attn_ext_q4_0_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4695,6 +4723,7 @@ template [[host_name("kernel_flash_attn_ext_q4_0_hk192_hv128")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_q4_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_q4_1_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4705,6 +4734,7 @@ template [[host_name("kernel_flash_attn_ext_q4_1_hk192_hv128")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_q4_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_q5_0_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4715,6 +4745,7 @@ template [[host_name("kernel_flash_attn_ext_q5_0_hk192_hv128")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_q5_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_q5_1_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4725,6 +4756,7 @@ template [[host_name("kernel_flash_attn_ext_q5_1_hk192_hv128")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_q5_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_q8_0_h40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -4765,14 +4797,19 @@ kernel void kernel_flash_attn_ext_vec( device const char * mask, device const char * sinks, device char * dst, + constant uint16_t & nwg, threadgroup half * shmem_f16 [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort3 ntg[[threads_per_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { + static_assert(DK % 32 == 0, "DK must be divisible by 32"); + static_assert(DV % 32 == 0, "DV must be divisible by 32"); + const short nsg = ntg.y; // number of simdgroups + const short iwg = tgpig[2]%nwg; - const int iq3 = tgpig[2]; + const int iq3 = tgpig[2]/nwg; const int iq2 = tgpig[1]; const int iq1 = tgpig[0]; @@ -4851,7 +4888,7 @@ kernel void kernel_flash_attn_ext_vec( // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns - for (int ic0 = 0; ic0 < args.ne11; ic0 += C*nsg) { + for (int ic0 = (int) iwg*C*nsg; ic0 < args.ne11; ic0 += (int) nwg*C*nsg) { const int ic = ic0 + C*sgitg; if (ic >= args.ne11) { break; @@ -4981,7 +5018,7 @@ kernel void kernel_flash_attn_ext_vec( } } - if (sinks != q && sgitg == 0) { + if (sinks != q && sgitg == 0 && iwg == 0) { const float m = M; const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2; @@ -5090,14 +5127,25 @@ kernel void kernel_flash_attn_ext_vec( threadgroup_barrier(mem_flags::mem_threadgroup); } - device float4 * dst4 = (device float4 *) dst; - // final rescale with 1/S and store to global memory if (sgitg == 0) { - const float S = ss[0]; + const int64_t nrows = args.ne3*args.ne2*args.ne1; + const int64_t rid = iq3*args.ne2*args.ne1 + iq2 + iq1*args.ne1; + + device float4 * dst4 = (device float4 *) dst; + device float * dst1 = (device float *) dst + nrows*DV*nwg; // the S and M are stored after the results + + const float S = nwg == 1 ? 1.0f/ss[0] : 1.0f; + // interleave the workgroup data for (short i = tiisg; i < DV4; i += NW) { - dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)iq1*args.ne1)*DV4 + i] = (float4) sr4[i]/S; + dst4[rid*DV4*nwg + nwg*i + iwg] = (float4) sr4[i]*S; + } + + // store S and M + if (nwg > 1 && tiisg == 0) { + dst1[rid*(2*nwg) + 2*iwg + 0] = ss[0]; + dst1[rid*(2*nwg) + 2*iwg + 1] = ss[1]; } } } @@ -5187,6 +5235,41 @@ template [[host_name("kernel_flash_attn_ext_vec_q8_0_hk576_hv512")]] kernel flas #undef FA_TYPES +kernel void kernel_flash_attn_ext_reduce( + constant ggml_metal_kargs_flash_attn_ext_reduce & args, + device const char * htmp, + device char * dst, + uint tgpig[[threadgroup_position_in_grid]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { + const uint64_t rid = tgpig; + + const short nwg = 32; + const short iwg = tiisg; + const short DV = args.ne20; + const short DV4 = DV/4; + + device const float4 * htmp4 = (device const float4 *) htmp + rid*DV4*nwg; + device const float * ss = (device const float *) htmp + (uint64_t)args.nrows*DV*nwg; + device float4 * dst4 = (device float4 *) dst + rid*DV4; + + float S = ss[rid*(2*nwg) + 2*iwg + 0]; + float M = ss[rid*(2*nwg) + 2*iwg + 1]; + + const float m = simd_max(M); + const float ms = exp(M - m); + + S = 1.0f/simd_sum(S*ms); + + for (int i = sgitg; i < DV4; i += nwg) { + const float4 v = simd_sum(htmp4[i*nwg + iwg]*ms); + + if (iwg == 0) { + dst4[i] = v*S; + } + } +} + template kernel void kernel_set( constant ggml_metal_kargs_set & args, @@ -7474,97 +7557,81 @@ kernel void kernel_mul_mm( } } -template +template // n_expert_used kernel void kernel_mul_mm_id_map0( constant ggml_metal_kargs_mul_mm_id_map0 & args, - device const char * src1, device const char * src2, - device char * hsrc1, device char * htpe, device char * hids, - uint3 tgpig[[threadgroup_position_in_grid]], - ushort3 tpitg[[thread_position_in_threadgroup]], - ushort3 ntg[[threads_per_threadgroup]]) { - const int ide = tgpig[0]; // expert id - - int n_all = 0; - - device int32_t * ids_i32 = (device int32_t *) (hids); + threadgroup char * shmem [[threadgroup(0)]], + ushort tpitg[[thread_position_in_threadgroup]], + ushort ntg[[threads_per_threadgroup]]) { + const short ide = tpitg; // expert id - for (int i21 = 0; i21 < args.neh11; i21++) { // n_tokens - device const int32_t * src2_i32 = (device const int32_t *) (src2 + i21*args.nb21); + uint32_t n_all = 0; - for (int i20 = 0; i20 < args.ne20; i20++) { // n_expert_used - if (src2_i32[i20] != ide) { - continue; - } + device int32_t * ids_i32 = (device int32_t *) hids + ide*args.ne21; - device const float4 * src1_f32x4 = (device const float4 *) ( src1 + i21*args.nb12 + (i20%args.ne11)*args.nb11); - device T4 * hsrc1_f32x4 = (device T4 *) (hsrc1 + (ide*args.neh11 + n_all)*args.nbh11); + for (int i21 = 0; i21 < args.ne21; i21 += ntg) { // n_tokens + if (i21 + tpitg < args.ne21) { + device const int32_t * src2_i32 = (device const int32_t *) (src2 + (i21 + tpitg)*args.nb21); - for (int64_t i00 = tpitg.x; i00 < args.ne10/4; i00 += ntg.x) { - hsrc1_f32x4[i00] = (T4) (src1_f32x4[i00]); - } + threadgroup uint16_t * sids = (threadgroup uint16_t *) shmem + tpitg*ne20; - if (tpitg.x == 0) { - ids_i32[i21*args.ne20 + i20] = ide*args.neh11 + n_all; + #pragma unroll(ne20) + for (short i20 = 0; i20 < ne20; i20++) { + sids[i20] = src2_i32[i20]; } - - ++n_all; } - } - if (tpitg.x == 0) { - device int32_t * tpe_i32 = (device int32_t *) (htpe); - tpe_i32[ide] = n_all; - } -} - -typedef decltype(kernel_mul_mm_id_map0) kernel_mul_mm_id_map0_t; - -template [[host_name("kernel_mul_mm_id_map0_f16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0; + threadgroup_barrier(mem_flags::mem_threadgroup); -template -kernel void kernel_mul_mm_id_map1( - constant ggml_metal_kargs_mul_mm_id_map1 & args, - device const char * hdst, - device const char * hids, - device char * dst, - uint3 tgpig[[threadgroup_position_in_grid]], - ushort3 tpitg[[thread_position_in_threadgroup]], - ushort3 ntg[[threads_per_threadgroup]]) { - const int i20 = tgpig[0]; // used expert - const int i21 = tgpig[1]; // token + for (short t = 0; t < ntg; t++) { + if (i21 + t >= args.ne21) { + break; + } - device const int32_t * ids_i32 = (device const int32_t *) (hids); - device float4 * dst_f32x4 = (device float4 *) (dst + i20*args.nb1 + i21*args.nb2); + threadgroup const uint16_t * sids = (threadgroup const uint16_t *) shmem + t*ne20; - const int id = ids_i32[i21*args.ne20 + i20]; + short sel = 0; + #pragma unroll(ne20) + for (short i20 = 0; i20 < ne20; i20++) { + sel += (sids[i20] == ide)*(i20 + 1); + } - const int ide = id / args.neh1; - const int idt = id % args.neh1; + ids_i32[n_all] = (i21 + t)*ne20 + sel - 1; - device const float4 * hdst_f32x4 = (device const float4 *) (hdst + idt*args.nbh1 + ide*args.nbh2); + n_all += sel > 0; + } - for (int64_t i0 = tpitg.x; i0 < args.neh0/4; i0 += ntg.x) { - dst_f32x4[i0] = hdst_f32x4[i0]; + threadgroup_barrier(mem_flags::mem_threadgroup); } + + device uint32_t * tpe_u32 = (device uint32_t *) (htpe); + tpe_u32[ide] = n_all; } -typedef decltype(kernel_mul_mm_id_map1) kernel_mul_mm_id_map1_t; +typedef decltype(kernel_mul_mm_id_map0<1>) kernel_mul_mm_id_map0_t; -template [[host_name("kernel_mul_mm_id_map1_f32")]] kernel kernel_mul_mm_id_map1_t kernel_mul_mm_id_map1; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>; +template [[host_name("kernel_mul_mm_id_map0_f16_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>; template kernel void kernel_mul_mm_id( constant ggml_metal_kargs_mul_mm_id & args, device const char * src0, device const char * src1, - device const char * tpe, + device const char * htpe, + device const char * hids, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiitg[[thread_index_in_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { threadgroup T * sa = (threadgroup T *)(shmem); @@ -7572,19 +7639,20 @@ kernel void kernel_mul_mm_id( const int r0 = tgpig.y; const int r1 = tgpig.x; - const int im = tgpig.z; + const int im = tgpig.z; // expert - device const int32_t * tpe_i32 = (device const int32_t *) (tpe); + device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe); + device const int32_t * ids_i32 = (device const int32_t *) (hids); - const int neh1 = tpe_i32[im]; + const int32_t neh1 = tpe_u32[im]; if (r1*BLOCK_SIZE_N >= neh1) { return; } // if this block is of 64x32 shape or smaller - const short n_rows = (args.neh0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.neh0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; - const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; + const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; + const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; // a thread shouldn't load data outside of the matrix const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; @@ -7600,20 +7668,23 @@ kernel void kernel_mul_mm_id( short il = (tiitg % THREAD_PER_ROW); - const int i12 = im%args.neh12; - const int i13 = im/args.neh12; + const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col]; - const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; + const short i11 = (id % args.ne20) % args.ne11; + const short i12 = (id / args.ne20); + const short i13 = 0; + + const uint64_t offset0 = im*args.nb02 + i13*args.nb03; const short offset1 = il/nl; device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1; - device const half * y = (device const half *)(src1 - + args.nbh13*i13 - + args.nbh12*i12 - + args.nbh11*(r1*BLOCK_SIZE_N + thread_col) - + args.nbh10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + device const float * y = (device const float *)(src1 + + args.nb13*i13 + + args.nb12*i12 + + args.nb11*i11 + + args.nb10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) { // load data and store to threadgroup memory @@ -7629,7 +7700,7 @@ kernel void kernel_mul_mm_id( + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4]; } - *(threadgroup half2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = *((device half2x4 *) y); + *(threadgroup half2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (half2x4)(*((device float2x4 *) y)); il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2 + nl - 1)/nl : x; @@ -7665,43 +7736,38 @@ kernel void kernel_mul_mm_id( } } - if ((r0 + 1) * BLOCK_SIZE_M <= args.neh0 && (r1 + 1) * BLOCK_SIZE_N <= neh1) { - device float * C = (device float *) dst + - (BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \ - (BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.neh0 + im*args.neh1*args.neh0; + threadgroup_barrier(mem_flags::mem_threadgroup); - for (short i = 0; i < 8; i++) { - simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.neh0 * (i/4), args.neh0); - } - } else { - // block is smaller than 64x32, we should avoid writing data outside of the matrix - threadgroup_barrier(mem_flags::mem_threadgroup); - threadgroup float * temp_str = ((threadgroup float *) shmem) \ - + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M; - for (short i = 0; i < 8; i++) { - simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); - } + threadgroup float * temp_str = ((threadgroup float *) shmem) \ + + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M; - threadgroup_barrier(mem_flags::mem_threadgroup); + #pragma unroll(8) + for (short i = 0; i < 8; i++) { + simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); + } - if (sgitg == 0) { - for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { - device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.neh0 + im*args.neh1*args.neh0; - device float4 * D4 = (device float4 *) D; + threadgroup_barrier(mem_flags::mem_threadgroup); - threadgroup float * C = temp_str + (j*BLOCK_SIZE_M); - threadgroup float4 * C4 = (threadgroup float4 *) C; + for (short j = sgitg; j < n_cols; j += 4) { + const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j]; - int i = 0; - for (; i < n_rows/4; i++) { - *(D4 + i) = *(C4 + i); - } + const short ide = id % args.ne20; + const short idt = id / args.ne20; - i *= 4; - for (; i < n_rows; i++) { - *(D + i) = *(C + i); - } - } + device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0; + device float4 * D4 = (device float4 *) D; + + threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M); + threadgroup float4 * C4 = (threadgroup float4 *) C; + + int i = tiisg; + for (; i < n_rows/4; i += 32) { + *(D4 + i) = *(C4 + i); + } + + i = (4*(n_rows/4)) + tiisg; + for (; i < n_rows; i += 32) { + *(D + i) = *(C + i); } } } diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index df27501361f7f..a9a91ca585b2d 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -420,9 +420,9 @@ struct ggml_backend_opencl_context { cl_kernel kernel_clamp; cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick, kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16; - cl_kernel kernel_norm; + cl_kernel kernel_norm, kernel_norm_mul_add; cl_kernel kernel_rms_norm, kernel_rms_norm_mul; - cl_kernel kernel_group_norm; + cl_kernel kernel_group_norm, kernel_group_norm_mul_add; cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8; cl_kernel kernel_soft_max, kernel_soft_max_4; cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16; @@ -1161,7 +1161,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve backend_ctx->program_norm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err)); GGML_LOG_CONT("."); } @@ -1487,7 +1488,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve backend_ctx->program_group_norm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err)); GGML_LOG_CONT("."); } @@ -2498,12 +2500,47 @@ static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) { return false; } + } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) { + const ggml_tensor *norm = cgraph->nodes[node_idx]; + const ggml_tensor *mul = cgraph->nodes[node_idx+1]; + const ggml_tensor *add = cgraph->nodes[node_idx+2]; + const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0]; + const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0]; + + // norm fusion only supports F32 + if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) { + return false; + } + + if (norm->src[0]->ne[0] % 4 != 0) { + return false; + } + + if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) { + return false; + } + } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) { + const ggml_tensor *gn = cgraph->nodes[node_idx]; + const ggml_tensor *mul = cgraph->nodes[node_idx+1]; + const ggml_tensor *add = cgraph->nodes[node_idx+2]; + const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0]; + const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0]; + + if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) { + return false; + } + + if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) { + return false; + } } return true; } static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor); +static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor); +static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor); static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; @@ -2520,6 +2557,16 @@ static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggm continue; } + if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) { + ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]); + i += 2; + continue; + } + if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) { + ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]); + i += 2; + continue; + } if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]); i++; @@ -2647,8 +2694,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te return op->src[0]->type == GGML_TYPE_F32; case GGML_OP_SOFT_MAX: case GGML_OP_NORM: - case GGML_OP_RMS_NORM: return true; + case GGML_OP_RMS_NORM: + return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]); case GGML_OP_REPEAT: return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded case GGML_OP_PAD: @@ -2728,10 +2776,6 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]); case GGML_OP_FLASH_ATTN_EXT: { - if (op->src[4]) { - return false; - } - const ggml_tensor * q = op->src[0]; const ggml_tensor * k = op->src[1]; const ggml_tensor * v = op->src[2]; @@ -5038,6 +5082,140 @@ static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst); } +static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) { + GGML_ASSERT(norm_tensor && mul_tensor && add_tensor); + + const ggml_tensor * src0 = norm_tensor->src[0]; + const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0]; + const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0]; + const ggml_tensor * dst = add_tensor; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offset2 = extra2->offset + src2->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + + float eps; + memcpy(&eps, norm_tensor->op_params, sizeof(float)); + + const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3]; + const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3]; + const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3]; + const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3]; + const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3]; + const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3]; + const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3]; + + size_t sgs; + if (backend_ctx->gpu_family == ADRENO) sgs = 64; + else if (backend_ctx->gpu_family == INTEL) sgs = 32; + else GGML_ASSERT(false && "Unsupported GPU"); + + cl_kernel kernel = backend_ctx->kernel_norm_mul_add; + + int nth = sgs; + int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel); + while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2; + nth = MIN(nth, max_workgroup_size); + nth = MIN(nth, ne00/4); + + size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t lws[] = {(size_t)nth, 1, 1}; + size_t num_subgroups = (nth + sgs - 1) / sgs; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21)); + CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22)); + CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23)); + CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21)); + CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22)); + CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23)); + CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1)); + CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2)); + CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3)); + CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps)); + CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL)); + + backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst); +} + +static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) { + GGML_ASSERT(gn_tensor && mul_tensor && add_tensor); + + const ggml_tensor * src0 = gn_tensor->src[0]; + const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0]; + const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0]; + const ggml_tensor * dst = add_tensor; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offset2 = extra2->offset + src2->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + + int groups; + float eps; + memcpy(&groups, gn_tensor->op_params, sizeof(int)); + memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float)); + + cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add; + int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel); + int ne = ggml_nelements(src0); + int group_size = ne / groups; + + size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) }; + size_t gws[] = { (size_t)groups * lws[0] }; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps)); + + backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst); +} + static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0); GGML_ASSERT(src0->extra); @@ -5583,6 +5761,7 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) { const ggml_tensor * v = dst->src[2]; const ggml_tensor * mask = dst->src[3]; + const ggml_tensor * sinks = dst->src[4]; GGML_ASSERT(q->extra); GGML_ASSERT(k->extra); GGML_ASSERT(v->extra); @@ -5590,6 +5769,9 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co if (mask) { GGML_ASSERT(mask->extra); } + if (sinks) { + GGML_ASSERT(sinks->extra); + } ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; @@ -5631,6 +5813,7 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra; ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra; ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL; + ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL; cl_ulong offset_q = extra_q->offset + q->view_offs; cl_ulong offset_k = extra_k->offset + k->view_offs; @@ -5638,6 +5821,8 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co cl_ulong offset_o = extra_o->offset + dst->view_offs; cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL; cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0; + cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL; + cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0; const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3]; const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3]; @@ -5692,6 +5877,8 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3)); CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2)); CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3)); + CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer)); + CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks)); if (n_q == 1) { const size_t wg_size = 64; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl index fea06867e1020..8f43c4f27d58c 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f16.cl @@ -49,7 +49,9 @@ __kernel void flash_attn_f16( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -171,6 +173,20 @@ __kernel void flash_attn_f16( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -214,7 +230,9 @@ __kernel void flash_attn_f16_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -247,7 +265,12 @@ __kernel void flash_attn_f16_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset); @@ -320,7 +343,11 @@ __kernel void flash_attn_f16_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl index 2d657327d6460..9c0bab135a912 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f32.cl @@ -49,7 +49,9 @@ __kernel void flash_attn_f32( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -171,6 +173,20 @@ __kernel void flash_attn_f32( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -214,7 +230,9 @@ __kernel void flash_attn_f32_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -247,7 +265,12 @@ __kernel void flash_attn_f32_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset); @@ -320,7 +343,11 @@ __kernel void flash_attn_f32_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl b/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl index 7067bd2591fa7..ec7361b9e3709 100644 --- a/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl +++ b/ggml/src/ggml-opencl/kernels/flash_attn_f32_f16.cl @@ -52,7 +52,9 @@ __kernel void flash_attn_f32_f16( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int block_q_idx = get_group_id(0); @@ -174,6 +176,20 @@ __kernel void flash_attn_f32_f16( } if (my_query_row < n_q) { + if (sinks_void != NULL) { + const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + const ACC_TYPE m_sink = sinks_ptr[head_idx]; + const ACC_TYPE m_final = max(m_i, m_sink); + + const ACC_TYPE scale_o = exp(m_i - m_final); + #pragma unroll + for (int i = 0; i < DV_VEC; ++i) { + o_acc[i] *= scale_o; + } + + l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final); + } + const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1; global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset); if (l_i > 0.0f) { @@ -217,7 +233,9 @@ __kernel void flash_attn_f32_f16_q1( const ulong mask_nb2, const ulong mask_nb3, const int mask_ne2, - const int mask_ne3 + const int mask_ne3, + const global void* sinks_void, + const ulong sinks_offset ) { const int tid = get_local_id(0); const int head_batch_idx = get_global_id(1); @@ -250,7 +268,12 @@ __kernel void flash_attn_f32_f16_q1( float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1); - ACC_TYPE m_i = -INFINITY; + const global ACC_TYPE* sinks_ptr = NULL; + if (sinks_void != NULL) { + sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset); + } + + ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY; for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) { const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1; const global KV_DATA_TYPE4* k_ptr = (const global KV_DATA_TYPE4*)(k_base + k_row_offset); @@ -323,7 +346,11 @@ __kernel void flash_attn_f32_f16_q1( const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1; global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset); - const ACC_TYPE l_final = local_l[0]; + ACC_TYPE l_final = local_l[0]; + + if (sinks_ptr != NULL) { + l_final += exp(sinks_ptr[head_idx] - m_final); + } if (l_final > 0.0f) { const ACC_TYPE l_inv = 1.0f / l_final; diff --git a/ggml/src/ggml-opencl/kernels/group_norm.cl b/ggml/src/ggml-opencl/kernels/group_norm.cl index 57c9df4d35b09..8e4fa0ed12d11 100644 --- a/ggml/src/ggml-opencl/kernels/group_norm.cl +++ b/ggml/src/ggml-opencl/kernels/group_norm.cl @@ -70,3 +70,52 @@ kernel void kernel_group_norm( dst[j] *= scale; } } + +//------------------------------------------------------------------------------ +// group_norm_mul_add +//------------------------------------------------------------------------------ +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_32 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_group_norm_mul_add( + global float * src0, ulong offset0, + global float * src1, ulong offset1, + global float * src2, ulong offset2, + global float * dst, ulong offsetd, + int ne, + int group_size, + float eps +) { + src0 = (global float *)((global char *)src0 + offset0); + src1 = (global float *)((global char *)src1 + offset1); + src2 = (global float *)((global char *)src2 + offset2); + dst = (global float *)((global char *)dst + offsetd); + + int start = get_group_id(0) * group_size; + int end = start + group_size; + if (end > ne) { + end = ne; + } + + float sum = 0.0f; + float sum_sq = 0.0f; + + for (int j = start + get_local_id(0); j < end; j += get_local_size(0)) { + float val = src0[j]; + sum += val; + sum_sq += val*val; + } + + sum = sub_group_reduce_add(sum); + sum_sq = sub_group_reduce_add(sum_sq); + + const float mean = sum / group_size; + const float var = sum_sq / group_size - mean * mean; + const float scale = rsqrt(var + eps); + + for (int j = start + get_local_id(0); j < end; j += get_local_size(0)) { + dst[j] = ((src0[j] - mean) * scale) * src1[j] + src2[j]; + } +} diff --git a/ggml/src/ggml-opencl/kernels/norm.cl b/ggml/src/ggml-opencl/kernels/norm.cl index 43167ba4d2212..170f822787be2 100644 --- a/ggml/src/ggml-opencl/kernels/norm.cl +++ b/ggml/src/ggml-opencl/kernels/norm.cl @@ -79,3 +79,83 @@ kernel void kernel_norm( y[i00] = y[i00] * scale; } } + +//------------------------------------------------------------------------------ +// norm_mul_add +//------------------------------------------------------------------------------ +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_32 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_norm_mul_add( + global char * src0_ptr, ulong src0_offset, + global char * src1_ptr, ulong src1_offset, + global char * src2_ptr, ulong src2_offset, + global char * dst_ptr, ulong dst_offset, + int ne00, int ne01, int ne02, int ne03, + ulong nb01, ulong nb02, ulong nb03, + int ne10, int ne11, int ne12, int ne13, + ulong nb11, ulong nb12, ulong nb13, + int ne20, int ne21, int ne22, int ne23, + ulong nb21, ulong nb22, ulong nb23, + ulong nbd1, ulong nbd2, ulong nbd3, + float eps, + local float2 * sums +) { + const int i03 = get_group_id(2); + const int i02 = get_group_id(1); + const int i01 = get_group_id(0); + + global float4 * x = (global float4 *)(src0_ptr + src0_offset + i01*nb01 + i02*nb02 + i03*nb03); + global float4 * w = (global float4 *)(src1_ptr + src1_offset + (i01%ne11)*nb11 + (i02%ne12)*nb12 + (i03%ne13)*nb13); + global float4 * b = (global float4 *)(src2_ptr + src2_offset + (i01%ne21)*nb21 + (i02%ne22)*nb22 + (i03%ne23)*nb23); + global float4 * y = (global float4 *)(dst_ptr + dst_offset + i01*nbd1 + i02*nbd2 + i03*nbd3); + + float p_sum = 0.0f; + float p_sum_sq = 0.0f; + + const int n_chunks = ne00 / 4; + for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) { + float4 val = x[i00]; + p_sum += val.x + val.y + val.z + val.w; + p_sum_sq += dot(val, val); + } + + p_sum = sub_group_reduce_add(p_sum); + p_sum_sq = sub_group_reduce_add(p_sum_sq); + + if (get_sub_group_local_id() == 0) { + sums[get_sub_group_id()] = (float2)(p_sum, p_sum_sq); + } + barrier(CLK_LOCAL_MEM_FENCE); + + if (get_local_id(0) == 0) { + float sum = 0.0f; + float sum_sq = 0.0f; + for (uint i = 0; i < get_num_sub_groups(); ++i) { + float2 s = sums[i]; + sum += s.x; + sum_sq += s.y; + } + + const float inv_ne00 = 1.0f / (float)ne00; + const float mean = sum * inv_ne00; + const float variance = mad(-mean, mean, sum_sq * inv_ne00); + + sums[0] = (float2)(mean, rsqrt(variance + eps)); + } + barrier(CLK_LOCAL_MEM_FENCE); + + const float2 mean_scale = sums[0]; + const float mean = mean_scale.x; + const float scale = mean_scale.y; + const float neg_mean_scale = -mean * scale; + + for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) { + const int w_idx = ne10 > 1 ? i00 : 0; + const int b_idx = ne20 > 1 ? i00 : 0; + const float4 norm_x = mad(x[i00], (float4)scale, (float4)neg_mean_scale); + y[i00] = mad(norm_x, w[w_idx], b[b_idx]); + } +} diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 12dd5dd2e6287..18ff4e0b0c7cf 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -4364,11 +4364,12 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g return (op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32) && (op->type == op->src[0]->type); #endif case GGML_OP_NORM: - case GGML_OP_RMS_NORM: return true; case GGML_OP_L2_NORM: case GGML_OP_GROUP_NORM: return ggml_is_contiguous(op->src[0]); + case GGML_OP_RMS_NORM: + return ((op->src[0]->ne[0] % WARP_SIZE) == 0); case GGML_OP_SCALE: return true; case GGML_OP_CONT: diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index a5406f761274d..7189fc1cfa057 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -360,6 +360,13 @@ struct vk_fa_pipeline_state { } }; +enum shader_reduction_mode { + SHADER_REDUCTION_MODE_SHMEM, + SHADER_REDUCTION_MODE_HYBRID, + SHADER_REDUCTION_MODE_SUBGROUP, + SHADER_REDUCTION_MODE_COUNT, +}; + static constexpr uint32_t num_argsort_pipelines = 11; static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1); @@ -386,14 +393,18 @@ struct vk_device_struct { bool uma; bool prefer_host_memory; bool float_controls_rte_fp16; - bool subgroup_add; + bool subgroup_arithmetic; bool subgroup_shuffle; + bool subgroup_ballot; + bool subgroup_clustered; bool multi_add; bool add_rms_fusion; uint32_t partials_binding_alignment; bool integer_dot_product; + // 0: default, 1: force mmvq, -1: disable mmvq + int32_t mmvq_mode; bool subgroup_size_control; uint32_t subgroup_min_size; @@ -451,12 +462,15 @@ struct vk_device_struct { vk_pipeline pipeline_matmul_split_k_reduce; vk_pipeline pipeline_quantize_q8_1; + vk_pipeline pipeline_quantize_q8_1_x4; vk_pipeline pipeline_dequant[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT]; + vk_pipeline pipeline_dequant_mul_mat_vec_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; + vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio]; vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT]; @@ -565,6 +579,7 @@ struct vk_device_struct { bool disable_fusion; bool disable_host_visible_vidmem; + bool allow_sysmem_fallback; #ifdef GGML_VULKAN_MEMORY_DEBUG std::unique_ptr memory_logger; @@ -1044,7 +1059,7 @@ struct vk_op_sum_rows_push_constants uint32_t ne0_1mp, ne0_1L; }; -vk_op_sum_rows_push_constants vk_op_sum_rows_push_constants_init(const ggml_tensor * src, const ggml_tensor * dst, int64_t n_cols) { +static vk_op_sum_rows_push_constants vk_op_sum_rows_push_constants_init(const ggml_tensor * src, const ggml_tensor * dst, int64_t n_cols) { uint32_t type_size = (uint32_t)ggml_type_size(src->type); vk_op_sum_rows_push_constants p = {}; p.n_cols = (uint32_t)n_cols; @@ -1355,6 +1370,7 @@ struct vk_instance_t { PFN_vkCmdInsertDebugUtilsLabelEXT pfn_vkCmdInsertDebugUtilsLabelEXT = {}; std::vector device_indices; + std::vector device_supports_membudget; vk_device devices[GGML_VK_MAX_DEVICES]; }; @@ -1807,8 +1823,8 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr return UINT32_MAX; } -static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { - VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")"); +static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list & req_flags_list) { + VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")"); if (size > device->max_memory_allocation_size) { throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit"); } @@ -1835,42 +1851,27 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties(); - uint32_t memory_type_index = UINT32_MAX; + for (auto &req_flags : req_flags_list) { + uint32_t memory_type_index = find_properties(&mem_props, &mem_req, req_flags); - memory_type_index = find_properties(&mem_props, &mem_req, req_flags); - buf->memory_property_flags = req_flags; + if (memory_type_index == UINT32_MAX) { + continue; + } + buf->memory_property_flags = req_flags; - if (memory_type_index == UINT32_MAX && fallback_flags) { - memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); - buf->memory_property_flags = fallback_flags; + try { + buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); + break; + } catch (const vk::SystemError& e) { + // loop and retry + } } - if (memory_type_index == UINT32_MAX) { + if (buf->device_memory == VK_NULL_HANDLE) { device->device.destroyBuffer(buf->buffer); throw vk::OutOfDeviceMemoryError("No suitable memory type found"); } - try { - buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); - } catch (const vk::SystemError& e) { - if (buf->memory_property_flags != fallback_flags) { - // Try again with fallback flags - memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags); - buf->memory_property_flags = fallback_flags; - - try { - buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index }); - } - catch (const vk::SystemError& e) { - device->device.destroyBuffer(buf->buffer); - throw e; - } - } else { - // Out of Host/Device memory, clean up buffer - device->device.destroyBuffer(buf->buffer); - throw e; - } - } buf->ptr = nullptr; if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { @@ -1891,7 +1892,7 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) { try { - return ggml_vk_create_buffer(device, size, req_flags, fallback_flags); + return ggml_vk_create_buffer(device, size, {req_flags, fallback_flags}); } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl; std::cerr << "ggml_vulkan: " << e.what() << std::endl; @@ -1903,15 +1904,29 @@ static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) { vk_buffer buf; try { if (device->prefer_host_memory) { - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal); + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal}); } else if (device->uma) { // Fall back to host memory type - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); } else if (device->disable_host_visible_vidmem) { - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eDeviceLocal); + if (device->allow_sysmem_fallback) { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); + } else { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + } } else { // use rebar if available, otherwise fallback to device only visible memory - buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal); + if (device->allow_sysmem_fallback) { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); + } else { + buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, + vk::MemoryPropertyFlagBits::eDeviceLocal}); + } } } catch (const vk::SystemError& e) { std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl; @@ -2089,10 +2104,11 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec const uint32_t warps = warptile[0] / warptile[10]; const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size; - const uint32_t mmid_row_ids = mul_mat_id ? (4096 * sizeof(uint32_t) + 4/*_ne1*/) : 0; + const uint32_t mmid_row_ids = mul_mat_id ? (warptile[2] * 2 * sizeof(uint16_t)) : 0; const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0; + const uint32_t ballots_sh = mul_mat_id ? (warps * 4 * sizeof(uint32_t)) : 0; - const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size; + const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size + ballots_sh; const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize; VK_LOG_DEBUG("ggml_vk_matmul_shmem_support(warptile=(" << warptile[0] << "," << warptile[1] << "," << warptile[2] << "), " @@ -2176,8 +2192,17 @@ static void ggml_vk_load_shaders(vk_device& device) { const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u); const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u); + const uint32_t mul_mat_subgroup_size = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size; + const uint32_t mul_mat_subgroup_size_8 = std::max(mul_mat_subgroup_size, 8u); + const uint32_t mul_mat_subgroup_size_16 = std::max(mul_mat_subgroup_size, 16u); + const uint32_t mul_mat_subgroup_size_32 = std::max(mul_mat_subgroup_size, 32u); + + const bool subgroup_min_size_16 = (!device->subgroup_size_control && device->subgroup_size >= 16) || + (device->subgroup_size_control && device->subgroup_max_size >= 16); + // mulmat std::vector l_warptile, m_warptile, s_warptile, + l_warptile_id, m_warptile_id, s_warptile_id, l_warptile_mmq, m_warptile_mmq, s_warptile_mmq, l_warptile_mmq_int, m_warptile_mmq_int, s_warptile_mmq_int, l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k, @@ -2214,7 +2239,7 @@ static void ggml_vk_load_shaders(vk_device& device) { s_mmq_wg_denoms_k = { 32, 64, 1 }; // spec constants and tile sizes for quant matmul_id - l_warptile_mmqid = { 256, 128, 128, 16, 0, device->subgroup_size }; + l_warptile_mmqid = { 256, 128, 128, 16, 1, device->subgroup_size }; m_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size }; s_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size }; l_mmqid_wg_denoms = { 128, 128, 1 }; @@ -2248,9 +2273,18 @@ static void ggml_vk_load_shaders(vk_device& device) { m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 }; s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, subgroup_size_8 }; + l_warptile_id = { 128, 128, 128, 16, mul_mat_subgroup_size_16 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_16 }; + m_warptile_id = { 128, 64, 64, 16, mul_mat_subgroup_size_16, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_16 }; + s_warptile_id = { mul_mat_subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_16 }; + + l_warptile_mmqid = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_8 }; + m_warptile_mmqid = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_8 }; + s_warptile_mmqid = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_8 }; + // chip specific tuning if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) { m_warptile_mmq = m_warptile_mmq_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 }; + m_warptile_mmqid = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 }; } l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 }; @@ -2276,14 +2310,14 @@ static void ggml_vk_load_shaders(vk_device& device) { } // Disable mul_mat_id if not enough shared memory is available - if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, true, t)) { + if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmqid, true, t)) { device->mul_mat_id_s[i] = false; device->mul_mat_id_m[i] = false; device->mul_mat_id_l[i] = false; - } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, true, t)) { + } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmqid, true, t)) { device->mul_mat_id_m[i] = false; device->mul_mat_id_l[i] = false; - } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, true, t)) { + } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmqid, true, t)) { device->mul_mat_id_l[i] = false; } } @@ -2461,32 +2495,34 @@ static void ggml_vk_load_shaders(vk_device& device) { CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_MXFP4], matmul_mxfp4_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3) - CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) + GGML_ASSERT(device->subgroup_ballot); + + CREATE_MM2(pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT) if (device->coopmat_bf16_support) { - CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) + CREATE_MM(pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4) } #endif - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_q4_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_q5_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_q5_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_q8_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_q2_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_q3_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_q4_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_q5_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_q6_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_iq1_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_iq1_m_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_iq2_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_iq2_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_iq2_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_iq3_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_iq3_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_iq4_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_iq4_nl_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) - CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_mxfp4_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) + CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4) #undef CREATE_MM #undef CREATE_MM2 } else @@ -2573,55 +2609,56 @@ static void ggml_vk_load_shaders(vk_device& device) { CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); } - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); + GGML_ASSERT(device->subgroup_ballot); + + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT) if (device->coopmat_bf16_support) { - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); } #endif - CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - - CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); #undef CREATE_MM2 #undef CREATE_MM } else #endif // defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) if (device->fp16) { // Create 6 variants, {s,m,l}x{unaligned,aligned} -#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ +#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ if (device->mul_mat ## ID ## _l[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _s[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _l[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _s[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ #define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l[TYPE]) { \ @@ -2638,38 +2675,38 @@ static void ggml_vk_load_shaders(vk_device& device) { } \ // Create 2 variants, {f16,f32} accumulator -#define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ - CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ - CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ - - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - - CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0], matmul_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1], matmul_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0], matmul_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1], matmul_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0], matmul_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - - CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K], matmul_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K], matmul_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K], matmul_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K], matmul_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K], matmul_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S], matmul_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M], matmul_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS], matmul_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS], matmul_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S], matmul_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS], matmul_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); +#define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ + CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ + CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ + + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0], matmul_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1], matmul_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0], matmul_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1], matmul_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0], matmul_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K], matmul_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K], matmul_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K], matmul_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K], matmul_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K], matmul_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S], matmul_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M], matmul_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS], matmul_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS], matmul_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S], matmul_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS], matmul_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) if (device->integer_dot_product) { @@ -2681,51 +2718,77 @@ static void ggml_vk_load_shaders(vk_device& device) { } #endif - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id); - - CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - - CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) { + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16); + + CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + } else { + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0); + + CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_q4_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_q5_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_q5_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_q8_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_q2_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_q3_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_q4_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_q5_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_q6_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_iq1_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_iq1_m_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_iq2_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_iq2_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_iq2_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_iq3_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_iq3_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_iq4_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_iq4_nl_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_mxfp4_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + } #undef CREATE_MM2 #undef CREATE_MMQ #undef CREATE_MM } else { // Create 6 variants, {s,m,l}x{unaligned,aligned} -#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ +#define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \ if (device->mul_mat ## ID ## _l[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _s[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _l[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _m[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ if (device->mul_mat ## ID ## _s[TYPE]) \ - ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \ + ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \ #define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l[TYPE]) \ @@ -2735,34 +2798,34 @@ static void ggml_vk_load_shaders(vk_device& device) { if (device->mul_mat ## ID ## _s[TYPE]) \ ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC "_s", NAMELC ## _fp32_len, NAMELC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \ - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - - CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - - CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f32acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f32acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f32acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f32acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f32acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f32acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, ); + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + + CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f32acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f32acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f32acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f32acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f32acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f32acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0); #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) if (device->integer_dot_product) { @@ -2774,33 +2837,59 @@ static void ggml_vk_load_shaders(vk_device& device) { } #endif - CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id); - - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id); - - CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - - CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); - CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id); + if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) { + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_subgroup_f16, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_subgroup_f16_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16); + + CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_subgroup_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_subgroup_q4_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_subgroup_q5_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_subgroup_q5_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_subgroup_q8_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_subgroup_q2_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_subgroup_q3_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_subgroup_q4_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_subgroup_q5_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_subgroup_q6_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_subgroup_iq1_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_subgroup_iq1_m_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_subgroup_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_subgroup_iq2_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_subgroup_iq2_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_subgroup_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_subgroup_iq3_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_subgroup_iq4_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_subgroup_iq4_nl_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_subgroup_mxfp4_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size); + } else { + CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0); + + CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_iq1_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_iq1_m_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_iq2_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_iq2_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_mxfp4_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0); + } } // reusing CREATE_MM from the fp32 path if ((device->coopmat2 || device->coopmat_support) @@ -2817,8 +2906,8 @@ static void ggml_vk_load_shaders(vk_device& device) { m_wg_denoms = { 64, 64, 1 }; s_wg_denoms = { 32, 32, 1 }; - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, ); - CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0); + CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0); } #undef CREATE_MM @@ -2836,60 +2925,91 @@ static void ggml_vk_load_shaders(vk_device& device) { rm_stdq = 2; uint32_t rm_iq = 2 * rm_kq; + const bool use_subgroups = device->subgroup_arithmetic && device->architecture != vk_device_architecture::AMD_GCN; + // Ensure a subgroup size >= 16 is available + const bool use_subgroups16 = use_subgroups && + (!device->subgroup_size_control && device->subgroup_size >= 16 || + device->subgroup_size_control && device->subgroup_min_size <= 16 && device->subgroup_max_size >= 16); + + const uint32_t subgroup_size = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control && device->subgroup_min_size <= 16 && device->subgroup_max_size >= 16) ? 16 : device->subgroup_size; + const uint32_t subgroup_size16 = std::max(subgroup_size, 16u); + + const uint32_t force_subgroup_size = use_subgroups ? subgroup_size : 0; + const uint32_t force_subgroup_size16 = use_subgroups16 ? subgroup_size16 : 0; + for (uint32_t w = 0; w < DMMV_WG_SIZE_COUNT; ++w) { - uint32_t wg_size_subgroup16 = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_16 : (subgroup_size_16 * 4); - uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? device->subgroup_size : (device->subgroup_size * 4); + const uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size : (subgroup_size * 4); + const uint32_t wg_size_subgroup16 = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size16 : (subgroup_size16 * 4); + + const shader_reduction_mode reduc = (use_subgroups && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP : + (use_subgroups && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID : + SHADER_REDUCTION_MODE_SHMEM; - const bool s = device->subgroup_add && device->architecture != vk_device_architecture::AMD_GCN; + const shader_reduction_mode reduc16 = (use_subgroups16 && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP : + (use_subgroups16 && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID : + SHADER_REDUCTION_MODE_SHMEM; for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) { - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[s], arr_dmmv_f32_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[s], arr_dmmv_f16_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[s], arr_dmmv_bf16_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[s], arr_dmmv_q4_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32", arr_dmmv_q4_1_f32_f32_len[s], arr_dmmv_q4_1_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32", arr_dmmv_q5_0_f32_f32_len[s], arr_dmmv_q5_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32", arr_dmmv_q5_1_f32_f32_len[s], arr_dmmv_q5_1_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32", arr_dmmv_q8_0_f32_f32_len[s], arr_dmmv_q8_0_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32", arr_dmmv_q2_k_f32_f32_len[s], arr_dmmv_q2_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32", arr_dmmv_q3_k_f32_f32_len[s], arr_dmmv_q3_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32", arr_dmmv_q4_k_f32_f32_len[s], arr_dmmv_q4_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32", arr_dmmv_q5_k_f32_f32_len[s], arr_dmmv_q5_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32", arr_dmmv_q6_k_f32_f32_len[s], arr_dmmv_q6_k_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32", arr_dmmv_iq1_s_f32_f32_len[s], arr_dmmv_iq1_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32", arr_dmmv_iq1_m_f32_f32_len[s], arr_dmmv_iq1_m_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32", arr_dmmv_iq2_xxs_f32_f32_len[s], arr_dmmv_iq2_xxs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32", arr_dmmv_iq2_xs_f32_f32_len[s], arr_dmmv_iq2_xs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32", arr_dmmv_iq2_s_f32_f32_len[s], arr_dmmv_iq2_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32", arr_dmmv_iq3_xxs_f32_f32_len[s], arr_dmmv_iq3_xxs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32", arr_dmmv_iq3_s_f32_f32_len[s], arr_dmmv_iq3_s_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32", arr_dmmv_iq4_xs_f32_f32_len[s], arr_dmmv_iq4_xs_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[s], arr_dmmv_iq4_nl_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[s], arr_dmmv_mxfp4_f32_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[s], arr_dmmv_f32_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[s], arr_dmmv_f16_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[s], arr_dmmv_bf16_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[s], arr_dmmv_q4_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32", arr_dmmv_q4_1_f16_f32_len[s], arr_dmmv_q4_1_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32", arr_dmmv_q5_0_f16_f32_len[s], arr_dmmv_q5_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32", arr_dmmv_q5_1_f16_f32_len[s], arr_dmmv_q5_1_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32", arr_dmmv_q8_0_f16_f32_len[s], arr_dmmv_q8_0_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32", arr_dmmv_q2_k_f16_f32_len[s], arr_dmmv_q2_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32", arr_dmmv_q3_k_f16_f32_len[s], arr_dmmv_q3_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32", arr_dmmv_q4_k_f16_f32_len[s], arr_dmmv_q4_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32", arr_dmmv_q5_k_f16_f32_len[s], arr_dmmv_q5_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32", arr_dmmv_q6_k_f16_f32_len[s], arr_dmmv_q6_k_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32", arr_dmmv_iq1_s_f16_f32_len[s], arr_dmmv_iq1_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32", arr_dmmv_iq1_m_f16_f32_len[s], arr_dmmv_iq1_m_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32", arr_dmmv_iq2_xxs_f16_f32_len[s], arr_dmmv_iq2_xxs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32", arr_dmmv_iq2_xs_f16_f32_len[s], arr_dmmv_iq2_xs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32", arr_dmmv_iq2_s_f16_f32_len[s], arr_dmmv_iq2_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32", arr_dmmv_iq3_xxs_f16_f32_len[s], arr_dmmv_iq3_xxs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32", arr_dmmv_iq3_s_f16_f32_len[s], arr_dmmv_iq3_s_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32", arr_dmmv_iq4_xs_f16_f32_len[s], arr_dmmv_iq4_xs_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32", arr_dmmv_iq4_nl_f16_f32_len[s], arr_dmmv_iq4_nl_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32", arr_dmmv_mxfp4_f16_f32_len[s], arr_dmmv_mxfp4_f16_f32_data[s], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[reduc], arr_dmmv_f32_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[reduc], arr_dmmv_f16_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[reduc], arr_dmmv_bf16_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[reduc], arr_dmmv_q4_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32", arr_dmmv_q4_1_f32_f32_len[reduc], arr_dmmv_q4_1_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32", arr_dmmv_q5_0_f32_f32_len[reduc], arr_dmmv_q5_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32", arr_dmmv_q5_1_f32_f32_len[reduc], arr_dmmv_q5_1_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32", arr_dmmv_q8_0_f32_f32_len[reduc], arr_dmmv_q8_0_f32_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32", arr_dmmv_q2_k_f32_f32_len[reduc16], arr_dmmv_q2_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32", arr_dmmv_q3_k_f32_f32_len[reduc16], arr_dmmv_q3_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32", arr_dmmv_q4_k_f32_f32_len[reduc16], arr_dmmv_q4_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32", arr_dmmv_q5_k_f32_f32_len[reduc16], arr_dmmv_q5_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32", arr_dmmv_q6_k_f32_f32_len[reduc16], arr_dmmv_q6_k_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32", arr_dmmv_iq1_s_f32_f32_len[reduc16], arr_dmmv_iq1_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32", arr_dmmv_iq1_m_f32_f32_len[reduc16], arr_dmmv_iq1_m_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32", arr_dmmv_iq2_xxs_f32_f32_len[reduc16], arr_dmmv_iq2_xxs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32", arr_dmmv_iq2_xs_f32_f32_len[reduc16], arr_dmmv_iq2_xs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32", arr_dmmv_iq2_s_f32_f32_len[reduc16], arr_dmmv_iq2_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32", arr_dmmv_iq3_xxs_f32_f32_len[reduc16], arr_dmmv_iq3_xxs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32", arr_dmmv_iq3_s_f32_f32_len[reduc16], arr_dmmv_iq3_s_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32", arr_dmmv_iq4_xs_f32_f32_len[reduc16], arr_dmmv_iq4_xs_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[reduc16], arr_dmmv_iq4_nl_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[reduc16], arr_dmmv_mxfp4_f32_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[reduc], arr_dmmv_f32_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[reduc], arr_dmmv_f16_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[reduc], arr_dmmv_bf16_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[reduc], arr_dmmv_q4_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32", arr_dmmv_q4_1_f16_f32_len[reduc], arr_dmmv_q4_1_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32", arr_dmmv_q5_0_f16_f32_len[reduc], arr_dmmv_q5_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32", arr_dmmv_q5_1_f16_f32_len[reduc], arr_dmmv_q5_1_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32", arr_dmmv_q8_0_f16_f32_len[reduc], arr_dmmv_q8_0_f16_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32", arr_dmmv_q2_k_f16_f32_len[reduc16], arr_dmmv_q2_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32", arr_dmmv_q3_k_f16_f32_len[reduc16], arr_dmmv_q3_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32", arr_dmmv_q4_k_f16_f32_len[reduc16], arr_dmmv_q4_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32", arr_dmmv_q5_k_f16_f32_len[reduc16], arr_dmmv_q5_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32", arr_dmmv_q6_k_f16_f32_len[reduc16], arr_dmmv_q6_k_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32", arr_dmmv_iq1_s_f16_f32_len[reduc16], arr_dmmv_iq1_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32", arr_dmmv_iq1_m_f16_f32_len[reduc16], arr_dmmv_iq1_m_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32", arr_dmmv_iq2_xxs_f16_f32_len[reduc16], arr_dmmv_iq2_xxs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32", arr_dmmv_iq2_xs_f16_f32_len[reduc16], arr_dmmv_iq2_xs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32", arr_dmmv_iq2_s_f16_f32_len[reduc16], arr_dmmv_iq2_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32", arr_dmmv_iq3_xxs_f16_f32_len[reduc16], arr_dmmv_iq3_xxs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32", arr_dmmv_iq3_s_f16_f32_len[reduc16], arr_dmmv_iq3_s_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32", arr_dmmv_iq4_xs_f16_f32_len[reduc16], arr_dmmv_iq4_xs_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32", arr_dmmv_iq4_nl_f16_f32_len[reduc16], arr_dmmv_iq4_nl_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32", arr_dmmv_mxfp4_f16_f32_len[reduc16], arr_dmmv_mxfp4_f16_f32_data[reduc16], "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16); + +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + if (device->integer_dot_product) { + const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size; + const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4); + + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_q8_1_f32", arr_dmmv_q4_0_q8_1_f32_len[reduc], arr_dmmv_q4_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_q8_1_f32", arr_dmmv_q4_1_q8_1_f32_len[reduc], arr_dmmv_q4_1_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_q8_1_f32", arr_dmmv_q5_0_q8_1_f32_len[reduc], arr_dmmv_q5_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_q8_1_f32", arr_dmmv_q5_1_q8_1_f32_len[reduc], arr_dmmv_q5_1_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_q8_1_f32", arr_dmmv_q8_0_q8_1_f32_len[reduc], arr_dmmv_q8_0_q8_1_f32_data[reduc], "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); + } +#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT } } @@ -2981,10 +3101,17 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, 5 * sizeof(uint32_t), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + + if (device->subgroup_clustered && device->subgroup_require_full_support) { + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_subgroup_len, quantize_q8_1_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); + } else { + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1, "quantize_q8_1", quantize_q8_1_len, quantize_q8_1_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_len, quantize_q8_1_x4_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1); + } for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) { - if (device->subgroup_add && device->subgroup_require_full_support) { + if (device->subgroup_arithmetic && device->subgroup_require_full_support) { ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true); } else { ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true); @@ -3362,6 +3489,9 @@ static vk_device ggml_vk_get_device(size_t idx) { const char* GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM = getenv("GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM"); device->disable_host_visible_vidmem = GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM != nullptr; + const char* GGML_VK_ALLOW_SYSMEM_FALLBACK = getenv("GGML_VK_ALLOW_SYSMEM_FALLBACK"); + device->allow_sysmem_fallback = GGML_VK_ALLOW_SYSMEM_FALLBACK != nullptr; + bool fp16_storage = false; bool fp16_compute = false; bool maintenance4_support = false; @@ -3500,11 +3630,15 @@ static vk_device ggml_vk_get_device(size_t idx) { } device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16; - device->subgroup_add = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && - (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic); - + device->subgroup_arithmetic = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && + (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic); device->subgroup_shuffle = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eShuffle); + device->subgroup_clustered = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && + (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eClustered); + + device->subgroup_ballot = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) && + (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eBallot); const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr; @@ -3655,9 +3789,7 @@ static vk_device ggml_vk_get_device(size_t idx) { (subgroup_size_control_props.requiredSubgroupSizeStages & vk::ShaderStageFlagBits::eCompute) && subgroup_size_control_features.subgroupSizeControl; - if (device->subgroup_size_control) { - device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups; - } + device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups; #if defined(VK_KHR_cooperative_matrix) device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix; @@ -3959,11 +4091,18 @@ static vk_device ggml_vk_get_device(size_t idx) { device->disable_fusion = getenv("GGML_VK_DISABLE_FUSION") != nullptr; device->add_rms_fusion = !device->disable_fusion && - device->subgroup_add && + device->subgroup_arithmetic && device->vendor_id != VK_VENDOR_ID_INTEL; device->partials_binding_alignment = std::max(4u, (uint32_t)device->properties.limits.minStorageBufferOffsetAlignment); + device->mmvq_mode = 0; + if (getenv("GGML_VK_DISABLE_MMVQ")) { + device->mmvq_mode = -1; + } else if (getenv("GGML_VK_FORCE_MMVQ")) { + device->mmvq_mode = 1; + } + return device; } @@ -4202,15 +4341,16 @@ static void ggml_vk_instance_init() { vk_instance.pfn_vkCmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdBeginDebugUtilsLabelEXT"); vk_instance.pfn_vkCmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdEndDebugUtilsLabelEXT"); vk_instance.pfn_vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdInsertDebugUtilsLabelEXT"); - } vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr; + std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); + // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES"); if (devices_env != nullptr) { - size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size(); + size_t num_available_devices = devices.size(); std::string devices(devices_env); std::replace(devices.begin(), devices.end(), ',', ' '); @@ -4225,8 +4365,6 @@ static void ggml_vk_instance_init() { vk_instance.device_indices.push_back(tmp); } } else { - std::vector devices = vk_instance.instance.enumeratePhysicalDevices(); - // If no vulkan devices are found, return early if (devices.empty()) { GGML_LOG_INFO("ggml_vulkan: No devices found.\n"); @@ -4331,6 +4469,19 @@ static void ggml_vk_instance_init() { GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size()); for (size_t i = 0; i < vk_instance.device_indices.size(); i++) { + vk::PhysicalDevice vkdev = devices[vk_instance.device_indices[i]]; + std::vector extensionprops = vkdev.enumerateDeviceExtensionProperties(); + + bool membudget_supported = false; + for (const auto & ext : extensionprops) { + if (strcmp(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, ext.extensionName) == 0) { + membudget_supported = true; + break; + } + } + + vk_instance.device_supports_membudget.push_back(membudget_supported); + ggml_vk_print_gpu_info(i); } } @@ -4477,9 +4628,22 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols, uint32_t m, uint32_t k) { VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); - GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16); + GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16 || b_type == GGML_TYPE_Q8_1); GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols); + if (b_type == GGML_TYPE_Q8_1) { + switch (a_type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + break; + default: + return nullptr; + } + } + switch (a_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: @@ -4511,7 +4675,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * // heuristic to choose workgroup size uint32_t dmmv_wg = DMMV_WG_SIZE_SUBGROUP; - if (ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { + if ((ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA && ctx->device->architecture != vk_device_architecture::NVIDIA_PRE_TURING) || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { // Prefer larger workgroups when M is small, to spread the work out more // and keep more SMs busy. // q6_k seems to prefer small workgroup size even for "medium" values of M. @@ -4526,6 +4690,13 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * } } + if (b_type == GGML_TYPE_Q8_1) { + if (ctx->device->vendor_id == VK_VENDOR_ID_INTEL) { + dmmv_wg = DMMV_WG_SIZE_SUBGROUP; + } + return ctx->device->pipeline_dequant_mul_mat_vec_q8_1_f32[dmmv_wg][a_type][num_cols-1]; + } + return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[dmmv_wg][a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[dmmv_wg][a_type][num_cols-1]; } @@ -4595,7 +4766,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co } static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) { - VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()"); + VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec_id()"); GGML_ASSERT(b_type == GGML_TYPE_F32); switch (a_type) { @@ -4698,8 +4869,8 @@ static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_ static void * ggml_vk_host_malloc(vk_device& device, size_t size) { VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")"); vk_buffer buf = ggml_vk_create_buffer(device, size, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); + {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, + vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent}); if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n", @@ -5508,20 +5679,20 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& ggml_vk_sync_buffers(ctx, subctx); } -static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) { +static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type, bool use_x4_blocks) { switch(type) { case GGML_TYPE_Q8_1: - return ctx->device->pipeline_quantize_q8_1; + return use_x4_blocks ? ctx->device->pipeline_quantize_q8_1_x4 : ctx->device->pipeline_quantize_q8_1; default: std::cerr << "Missing quantize pipeline for type: " << ggml_type_name(type) << std::endl; GGML_ABORT("fatal error"); } } -static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne) { +static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, vk_subbuffer&& in, vk_subbuffer&& out, uint32_t ne, bool use_x4_blocks = false) { VK_LOG_DEBUG("ggml_vk_quantize_q8_1(" << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ", " << ne << ")"); - vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1); + vk_pipeline pipeline = use_x4_blocks ? ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true) : ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, false); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array{ne}, { ne, 1, 1 }); ggml_vk_sync_buffers(ctx, subctx); @@ -5641,12 +5812,15 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT if (quantize_y) { - to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1); + to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true); } if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; - const uint64_t y_sz_upd = y_sz * ne12 * ne13; + uint64_t y_sz_upd = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144; + } const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0; if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || @@ -5712,7 +5886,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub GGML_ASSERT(d_Y->size >= y_sz * ne12 * ne13); } else if (quantize_y) { d_Y = ctx->prealloc_y; - GGML_ASSERT(d_Y->size >= y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)); + GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz * ne12 * ne13, 144) * 144); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; @@ -5724,11 +5898,6 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub ggml_vk_sync_buffers(ctx, subctx); } } - if (y_non_contig || quantize_y) { - if (ctx->prealloc_y_need_sync) { - ggml_vk_sync_buffers(ctx, subctx); - } - } if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); @@ -5740,6 +5909,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub if (y_non_contig) { if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); ctx->prealloc_y_last_tensor_used = src1; @@ -5748,7 +5920,10 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub if (quantize_y) { if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() || ctx->prealloc_y_last_tensor_used != src1) { - ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13); + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } + ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true); ctx->prealloc_y_last_pipeline_used = to_q8_1.get(); ctx->prealloc_y_last_tensor_used = src1; } @@ -5765,10 +5940,15 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub stride_batch_y = src1->nb[0] / ggml_type_size(src1->type); } + uint32_t y_sz_total = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_total = CEIL_DIV(y_sz_total, 144) * 144; + } + // compute ggml_vk_matmul( ctx, subctx, pipeline, - { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, + { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz_total }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21, @@ -5783,6 +5963,51 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub } } +// Device tuning +static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_t n, uint32_t k, ggml_type src0_type) { + if (device->mmvq_mode == 1) { + return true; + } else if (device->mmvq_mode == -1) { + return false; + } + + // MMVQ is generally good for batches + if (n > 1) { + return true; + } + + switch (device->vendor_id) { + case VK_VENDOR_ID_NVIDIA: + switch (src0_type) { + case GGML_TYPE_Q8_0: + return device->architecture == vk_device_architecture::NVIDIA_PRE_TURING; + default: + return true; + } + case VK_VENDOR_ID_AMD: + switch (src0_type) { + case GGML_TYPE_Q8_0: + return device->architecture == vk_device_architecture::AMD_GCN; + default: + return true; + } + case VK_VENDOR_ID_INTEL: + switch (src0_type) { + // From tests on A770 Linux, may need more tuning + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q5_1: + return false; + default: + return true; + } + default: + return true; + } + + GGML_UNUSED(m); + GGML_UNUSED(k); +} + static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; @@ -5837,22 +6062,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; - - const bool qx_needs_dequant = x_non_contig; - const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig; - - // Not implemented - GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT - - const uint64_t x_ne = ne01 * ne00; - const uint64_t y_ne = ne11 * ne10; - const uint64_t d_ne = ne11 * ne01; - - const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); - const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); - const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; - const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; - const uint64_t d_sz = sizeof(float) * d_ne; + bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0 && ggml_vk_should_use_mmvq(ctx->device, ne01, ne11, ne10, src0->type); vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr; @@ -5864,14 +6074,47 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& } else { to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); } - vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11, ne20, ne00); + + // Check for mmq first + vk_pipeline dmmv = quantize_y ? ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, GGML_TYPE_Q8_1, ne11, ne20, ne00) : nullptr; + vk_pipeline to_q8_1 = nullptr; + + if (dmmv == nullptr) { + // Fall back to f16 dequant mul mat + dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11, ne20, ne00); + quantize_y = false; + } + + if (quantize_y) { + to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1, true); + } + + const bool qx_needs_dequant = x_non_contig; + const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig); + + // Not implemented + GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(dmmv != nullptr); + const uint64_t x_ne = ne01 * ne00; + const uint64_t y_ne = ne11 * ne10; + const uint64_t d_ne = ne11 * ne01; + + const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment); + const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); + const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz; + const uint64_t y_sz = quantize_y ? (y_ne * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne); + const uint64_t d_sz = sizeof(float) * d_ne; + if (dryrun) { const uint64_t x_sz_upd = x_sz * ne02 * ne03; - const uint64_t y_sz_upd = y_sz * ne12 * ne13; + uint64_t y_sz_upd = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144; + } if ( (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { @@ -5880,7 +6123,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { ctx->prealloc_size_x = x_sz_upd; } - if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz_upd) { ctx->prealloc_size_y = y_sz_upd; } @@ -5891,6 +6134,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (qy_needs_dequant) { ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1); } + if (quantize_y) { + ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1); + } ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1); return; } @@ -5921,6 +6167,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& } if (qy_needs_dequant) { d_Y = ctx->prealloc_y; + } else if (quantize_y) { + d_Y = ctx->prealloc_y; + GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz * ne12 * ne13, 144) * 144); } else { d_Y = d_Qy; y_buf_offset = qy_buf_offset; @@ -5931,14 +6180,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (ctx->prealloc_x_need_sync) { ggml_vk_sync_buffers(ctx, subctx); } - } - if (y_non_contig) { - if (ctx->prealloc_y_need_sync) { - ggml_vk_sync_buffers(ctx, subctx); - } - } - if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } @@ -5946,11 +6188,25 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); ctx->prealloc_y_last_tensor_used = src1; } } + if (quantize_y) { + if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } + ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true); + ctx->prealloc_y_last_pipeline_used = to_q8_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } + } // For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01; @@ -5975,6 +6231,12 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& groups_x = CEIL_DIV(groups_x, groups_z); } + // TODO: Clean up this whole sz * ne_2 * ne_3 thing, it hasn't been necessary for a long time + uint32_t y_sz_total = y_sz * ne12 * ne13; + if (quantize_y) { + y_sz_total = CEIL_DIV(y_sz_total, 144) * 144; + } + // compute const vk_mat_vec_push_constants pc = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01, @@ -5982,13 +6244,13 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& (uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3, }; ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, - { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, + { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz_total }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); if (x_non_contig) { ctx->prealloc_x_need_sync = true; } - if (y_non_contig) { + if (y_non_contig || quantize_y) { ctx->prealloc_y_need_sync = true; } } @@ -6213,7 +6475,6 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& const uint64_t nei0 = ids->ne[0]; const uint64_t nei1 = ids->ne[1]; - GGML_ASSERT(nei0 * nei1 <= 4096); const uint32_t nbi1 = ids->nb[1]; const uint32_t nbi2 = ids->nb[2]; @@ -6379,11 +6640,6 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& ggml_vk_sync_buffers(ctx, subctx); } } - if (y_non_contig) { - if (ctx->prealloc_y_need_sync) { - ggml_vk_sync_buffers(ctx, subctx); - } - } if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); @@ -6396,6 +6652,9 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& if (y_non_contig) { if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); ctx->prealloc_y_last_tensor_used = src1; @@ -6593,11 +6852,6 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte ggml_vk_sync_buffers(ctx, subctx); } } - if (y_non_contig) { - if (ctx->prealloc_y_need_sync) { - ggml_vk_sync_buffers(ctx, subctx); - } - } if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); @@ -6607,6 +6861,9 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || ctx->prealloc_y_last_tensor_used != src1) { + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); ctx->prealloc_y_last_tensor_used = src1; @@ -6653,37 +6910,7 @@ static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } else { - // Split based on number of ids, to fit in shared memory - const uint32_t nei0 = (uint32_t)src2->ne[0]; - const uint32_t nei1 = (uint32_t)src2->ne[1]; - - GGML_ASSERT(nei0 <= 4096); - const uint32_t split_size = std::min(nei1, 4096u / nei0); - - if (split_size == nei1) { - ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); - } else { - ggml_tensor src1_copy = *src1; - ggml_tensor src2_copy = *src2; - ggml_tensor dst_copy = *dst; - - for (uint32_t token_start = 0; token_start < nei1; token_start += split_size) { - const uint32_t n_tokens = std::min(split_size, nei1 - token_start); - - src1_copy.view_offs = src1->view_offs + token_start * src1_copy.nb[2]; - src2_copy.view_offs = src2->view_offs + token_start * src2_copy.nb[1]; - dst_copy.view_offs = dst->view_offs + token_start * dst_copy.nb[2]; - - src1_copy.ne[2] = n_tokens; - src2_copy.ne[1] = n_tokens; - dst_copy.ne[2] = n_tokens; - - ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, &src1_copy, &src2_copy, &dst_copy, dryrun); - // invalidate cached prealloc_y, can't cache based on the copy of the ggml_tensor - ctx->prealloc_y_last_pipeline_used = {}; - ctx->prealloc_y_last_tensor_used = nullptr; - } - } + ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } } @@ -7806,6 +8033,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co break; case GGML_OP_GET_ROWS: elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; + elements[1] = std::min(elements[1], ctx->device->properties.limits.maxComputeWorkGroupCount[1]); + elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]); break; case GGML_OP_ARGSORT: elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; @@ -9142,7 +9371,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } - ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); + ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal}); } } @@ -9152,9 +9381,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t ggml_pipeline_allocate_descriptor_sets(ctx); - vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal}); X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne); Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne); @@ -9380,8 +9609,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant); float * x = (float *) malloc(x_sz); void * qx = malloc(qx_sz); - vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, {vk::MemoryPropertyFlagBits::eDeviceLocal}); float * x_ref = (float *) malloc(x_sz); ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16); @@ -9486,8 +9715,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ // float * x = (float *) malloc(x_sz); // block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz); // block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz); -// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); -// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); +// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); +// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); // // for (size_t i = 0; i < ne; i++) { // x[i] = rand() / (float)RAND_MAX; @@ -9634,10 +9863,10 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, float * x = (float *) malloc(x_sz); float * y = (float *) malloc(y_sz); void * qx = malloc(qx_sz); - vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); - vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal); + vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); + vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal}); float * d = (float *) malloc(d_sz); float * d_chk = (float *) malloc(d_sz); @@ -9664,7 +9893,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, if (ctx->prealloc_split_k != nullptr) { ggml_vk_destroy_buffer(ctx->prealloc_split_k); } - ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal); + ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal}); } } if (mmq) { @@ -10194,12 +10423,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr } } if (need_sync) { - VK_LOG_DEBUG("node_idx=" << i << " sync"); ctx->unsynced_nodes_written.clear(); ctx->unsynced_nodes_read.clear(); ggml_vk_sync_buffers(ctx, compute_ctx); - } else { - VK_LOG_DEBUG("node_idx=" << i << " unsynced"); } // Add the last fused node and all fused source nodes to the unsynchronized list. const ggml_tensor * last_node = cgraph->nodes[node_idx + ctx->num_additional_fused_ops]; @@ -11441,15 +11667,29 @@ void ggml_backend_vk_get_device_description(int device, char * description, size void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) { GGML_ASSERT(device < (int) vk_instance.device_indices.size()); + GGML_ASSERT(device < (int) vk_instance.device_supports_membudget.size()); vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]]; + vk::PhysicalDeviceMemoryBudgetPropertiesEXT budgetprops; + vk::PhysicalDeviceMemoryProperties2 memprops = {}; + bool membudget_supported = vk_instance.device_supports_membudget[device]; + + if (membudget_supported) { + memprops.pNext = &budgetprops; + } + vkdev.getMemoryProperties2(&memprops); - vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties(); + for (uint32_t i = 0; i < memprops.memoryProperties.memoryHeapCount; ++i) { + const vk::MemoryHeap & heap = memprops.memoryProperties.memoryHeaps[i]; - for (const vk::MemoryHeap& heap : memprops.memoryHeaps) { if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) { *total = heap.size; - *free = heap.size; + + if (membudget_supported && i < budgetprops.heapUsage.size()) { + *free = budgetprops.heapBudget[i] - budgetprops.heapUsage[i]; + } else { + *free = heap.size; + } break; } } @@ -11975,16 +12215,13 @@ static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions) { #ifdef __APPLE__ - bool portability_enumeration_ext = false; // Check for portability enumeration extension for MoltenVK support for (const auto& properties : instance_extensions) { if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { return true; } } - if (!portability_enumeration_ext) { - std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; - } + std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; #endif return false; @@ -12241,7 +12478,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * } else if (tensor->op == GGML_OP_CONCAT) { tensor_clone = ggml_concat(ggml_ctx, src_clone[0], src_clone[1], *(int *)tensor->op_params); } else if (tensor->op == GGML_OP_UPSCALE) { - tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]); + tensor_clone = ggml_interpolate(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]); } else if (tensor->op == GGML_OP_SCALE) { const float * params = (const float *)tensor->op_params; tensor_clone = ggml_scale_bias(ggml_ctx, src_clone[0], params[0], params[1]); @@ -12480,11 +12717,9 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) { return; } - bool fused_rms_norm_mul = false; if (ctx->num_additional_fused_ops == 1 && tensor->op == GGML_OP_RMS_NORM && cgraph->nodes[tensor_idx + 1]->op == GGML_OP_MUL) { - fused_rms_norm_mul = true; tensor = cgraph->nodes[tensor_idx + 1]; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp index d40848e15fe97..482445c6fea2c 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp @@ -334,6 +334,9 @@ void main() { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { Of[r][d] *= Lfrcp[r]; +#if defined(ACC_TYPE_MAX) + Of[r][d] = clamp(Of[r][d], -vec4(ACC_TYPE_MAX), vec4(ACC_TYPE_MAX)); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp index 97c2a54129709..63b32171b0c07 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp @@ -373,6 +373,9 @@ void main() { [[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) { [[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) { Of[r][d] *= ACC_TYPE(Lfrcp[r]); +#if defined(ACC_TYPE_MAX) + Of[r][d] = clamp(Of[r][d], -ACC_TYPE_MAX, ACC_TYPE_MAX); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index 77ae5ff01d03e..ab647e9bc8b68 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -283,6 +283,10 @@ void main() { O = Ldiag*O; +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + uint32_t o_offset = iq3*p.ne2*p.ne1*HSV; coopmat O_D = coopmat(O); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp index 76ef4b6dfb571..06e83822fe326 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp @@ -111,6 +111,10 @@ void main() { } } O *= L; + + const float FLT_MAX = uintBitsToFloat(0x7F7FFFFF); + O = clamp(O, -FLT_MAX, FLT_MAX); + data_d[iq3 * D * N + D * n + d] = O; } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp index ee6b86a18ddf2..7ef75cd7a492e 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp @@ -7,27 +7,36 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; void main() { const uint i00 = gl_GlobalInvocationID.x; - const uint i10 = gl_GlobalInvocationID.y; - const uint i11 = (gl_GlobalInvocationID.z)/p.ne12; - const uint i12 = (gl_GlobalInvocationID.z)%p.ne12; if (i00 >= p.ne00) { return; } - const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + uint gid_z = gl_GlobalInvocationID.z; + while (gid_z < p.ne11 * p.ne12) { + uint gid_y = gl_GlobalInvocationID.y; + while (gid_y < p.ne10) { + const uint i10 = gid_y; + const uint i11 = gid_z / p.ne12; + const uint i12 = gid_z % p.ne12; - const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03; - const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23; + const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + + const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03; + const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23; #if defined(DATA_A_BF16) - FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00])); + FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00])); #else - FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]); + FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]); #endif #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[d_offset + i00] = D_TYPE(v); + data_d[d_offset + i00] = D_TYPE(v); #else - data_d[d_offset + i00] = D_TYPE(v); + data_d[d_offset + i00] = D_TYPE(v); #endif + gid_y += gl_WorkGroupSize.y * gl_NumWorkGroups.y; + } + gid_z += gl_WorkGroupSize.z * gl_NumWorkGroups.z; + } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp index cfd645a38a8ba..339f905fc7566 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp @@ -10,9 +10,6 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in; void main() { const uint i00 = (gl_GlobalInvocationID.x)*2; - const uint i10 = gl_GlobalInvocationID.y; - const uint i11 = (gl_GlobalInvocationID.z)/p.ne12; - const uint i12 = (gl_GlobalInvocationID.z)%p.ne12; #ifdef NEEDS_INIT_IQ_SHMEM init_iq_shmem(gl_WorkGroupSize); @@ -22,20 +19,33 @@ void main() { return; } - const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + uint gid_z = gl_GlobalInvocationID.z; + while (gid_z < p.ne11 * p.ne12) { + uint gid_y = gl_GlobalInvocationID.y; + while (gid_y < p.ne10) { + const uint i10 = gid_y; + const uint i11 = gid_z / p.ne12; + const uint i12 = gid_z % p.ne12; - const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03; - const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23; + const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; - const uint ib = a_offset + i00/QUANT_K; // block index - const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index - const uint iybs = i00 - i00%QUANT_K; // dst block start index - const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; + const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03; + const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23; - vec2 v = dequantize(ib, iqs, 0); - const vec2 dm = get_dm(ib, 0); - v = v * dm.x + dm.y; + const uint ib = a_offset + i00/QUANT_K; // block index + const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index + const uint iybs = i00 - i00%QUANT_K; // dst block start index + const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; - data_d[d_offset + iybs + iqs ] = D_TYPE(v.x); - data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y); + vec2 v = dequantize(ib, iqs, 0); + const vec2 dm = get_dm(ib, 0); + v = v * dm.x + dm.y; + + data_d[d_offset + iybs + iqs ] = D_TYPE(v.x); + data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y); + + gid_y += gl_WorkGroupSize.y * gl_NumWorkGroups.y; + } + gid_z += gl_WorkGroupSize.z * gl_NumWorkGroups.z; + } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp index b93e9948f7fc9..f761391eaed71 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp @@ -1,7 +1,8 @@ #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_shader_8bit_storage : require -#if USE_SUBGROUP_ADD + +#if USE_SUBGROUP_ADD || USE_SUBGROUP_ADD_NO_SHMEM #extension GL_KHR_shader_subgroup_basic : require #extension GL_KHR_shader_subgroup_arithmetic : require #endif @@ -12,10 +13,19 @@ #include "types.comp" +#ifndef MMQ layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; +#else +layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];}; +#endif + layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; +#ifdef B_TYPE_VEC2 layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];}; +#endif +#ifdef B_TYPE_VEC4 layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; +#endif layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID @@ -92,6 +102,23 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; layout (constant_id = 2) const uint NUM_COLS = 1; +#ifdef USE_SUBGROUP_ADD_NO_SHMEM +void reduce_result(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + temp[j][n] = subgroupAdd(temp[j][n]); + } + } + + if (tid == 0) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]); + } + } + } +} +#else shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE]; void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) { @@ -152,3 +179,4 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs } #endif } +#endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp new file mode 100644 index 0000000000000..8fb314fa0aaa4 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vecq.comp @@ -0,0 +1,140 @@ +#version 450 + +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require +#extension GL_EXT_integer_dot_product : require + +#define MMQ +#define B_TYPE block_q8_1_x4 + +#include "mul_mat_vec_base.comp" + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +#define K_PER_ITER 8 + +#include "mul_mmq_funcs.comp" + +uint a_offset, b_offset, d_offset; + +int32_t cache_b_qs[2]; +vec2 cache_b_ds; + +void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i) { + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + const uint col = i*BLOCK_SIZE + tid*K_PER_ITER; + + // Preload data_b block + const uint b_block_idx = (j*p.batch_stride_b + col) / QUANT_K_Q8_1 + b_offset; + const uint b_qs_idx = tid % 4; + const uint b_block_idx_outer = b_block_idx / 4; + const uint b_block_idx_inner = b_block_idx % 4; + cache_b_ds = vec2(data_b[b_block_idx_outer].ds[b_block_idx_inner]); + +#if QUANT_R == 2 + cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx]; + cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx + 4]; +#else + cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2]; + cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2 + 1]; +#endif + + uint ibi = first_row*p.ncols; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint a_block_idx = (ibi + col)/QUANT_K + a_offset; + ibi += p.ncols; + + int32_t q_sum = 0; +#if QUANT_R == 2 + const i32vec2 data_a_qs = repack(a_block_idx, b_qs_idx); + q_sum += dotPacked4x8EXT(data_a_qs.x, + cache_b_qs[0]); + q_sum += dotPacked4x8EXT(data_a_qs.y, + cache_b_qs[1]); +#else + int32_t data_a_qs = repack(a_block_idx, b_qs_idx * 2); + q_sum += dotPacked4x8EXT(data_a_qs, + cache_b_qs[0]); + data_a_qs = repack(a_block_idx, b_qs_idx * 2 + 1); + q_sum += dotPacked4x8EXT(data_a_qs, + cache_b_qs[1]); +#endif + +#if QUANT_AUXF == 1 + temp[j][n] += mul_q8_1(q_sum, get_d(a_block_idx), cache_b_ds, 4); +#else + temp[j][n] += mul_q8_1(q_sum, get_dm(a_block_idx), cache_b_ds, 4); +#endif + } + } +} + +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { + const uint tid = gl_LocalInvocationID.x; + + get_offsets(a_offset, b_offset, d_offset); + a_offset /= QUANT_K; + b_offset /= QUANT_K_Q8_1; + + FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; + + [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + temp[j][n] = FLOAT_TYPE(0.0f); + } + } + + uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE); + if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) { + num_iters++; + } + int unroll_count = 4; + uint unrolled_iters = num_iters & ~(unroll_count - 1); + + uint i = 0; + while (i < unrolled_iters) { + // Manually partially unroll the loop + [[unroll]] for (uint k = 0; k < unroll_count; ++k) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + } + + unroll_count = 2; + unrolled_iters = num_iters & ~(unroll_count - 1); + +#if K_PER_ITER == 2 + if ((p.ncols & 1) != 0 && + unrolled_iters == num_iters && + unrolled_iters > 0) { + unrolled_iters -= unroll_count; + } +#endif + + while (i < unrolled_iters) { + // Manually partially unroll the loop + [[unroll]] for (uint k = 0; k < unroll_count; ++k) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + } + while (i < num_iters) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER); + i++; + } + + reduce_result(temp, d_offset, first_row, num_rows, tid); +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp index d57cc6bdec5df..7e10e99e9e877 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp @@ -17,6 +17,9 @@ #ifdef COOPMAT #extension GL_KHR_cooperative_matrix : enable #extension GL_KHR_memory_scope_semantics : enable +#endif + +#if defined(COOPMAT) || defined(MUL_MAT_ID_USE_SUBGROUPS) #extension GL_KHR_shader_subgroup_basic : enable #extension GL_KHR_shader_subgroup_ballot : enable #endif @@ -106,11 +109,13 @@ shared FLOAT_TYPE buf_b[BN * SHMEM_STRIDE]; #define NUM_WARPS (BLOCK_SIZE / WARP) #ifdef MUL_MAT_ID -shared u16vec2 row_ids[4096]; +shared u16vec2 row_ids[BN]; uint _ne1; -#ifdef COOPMAT + +#ifdef MUL_MAT_ID_USE_SUBGROUPS shared uvec4 ballots_sh[NUM_WARPS]; -void load_row_ids(uint expert_idx, bool nei0_is_pow2) { + +void load_row_ids(uint expert_idx, bool nei0_is_pow2, uint ic) { _ne1 = 0; uint num_elements = p.nei1 * p.nei0; uint nei0shift = findLSB(p.nei0); @@ -160,15 +165,18 @@ void load_row_ids(uint expert_idx, bool nei0_is_pow2) { barrier(); uint idx = subgroup_base + subgroupBallotExclusiveBitCount(ballot); - if (in_range && id == expert_idx) { - row_ids[_ne1 + idx] = u16vec2(ii0, ii1); + if (in_range && id == expert_idx && _ne1 + idx >= ic * BN && _ne1 + idx < (ic + 1) * BN) { + row_ids[_ne1 + idx - ic * BN] = u16vec2(ii0, ii1); } _ne1 += total; iter &= 15; + if (_ne1 >= (ic + 1) * BN) { + break; + } } barrier(); } -#endif +#endif // MUL_MAT_ID_USE_SUBGROUPS #endif // MUL_MAT_ID #ifdef COOPMAT @@ -235,18 +243,20 @@ void main() { const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK; #ifdef MUL_MAT_ID -#ifdef COOPMAT +#ifdef MUL_MAT_ID_USE_SUBGROUPS if (bitCount(p.nei0) == 1) { - load_row_ids(expert_idx, true); + load_row_ids(expert_idx, true, ic); } else { - load_row_ids(expert_idx, false); + load_row_ids(expert_idx, false, ic); } #else _ne1 = 0; - for (uint ii1 = 0; ii1 < p.nei1; ii1++) { - for (uint ii0 = 0; ii0 < p.nei0; ii0++) { + for (uint ii1 = 0; ii1 < p.nei1 && _ne1 < (ic + 1) * BN; ii1++) { + for (uint ii0 = 0; ii0 < p.nei0 && _ne1 < (ic + 1) * BN; ii0++) { if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) { - row_ids[_ne1] = u16vec2(ii0, ii1); + if (_ne1 >= ic * BN) { + row_ids[_ne1 - ic * BN] = u16vec2(ii0, ii1); + } _ne1++; } } @@ -792,7 +802,7 @@ void main() { [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) { #if LOAD_VEC_B == 8 #ifdef MUL_MAT_ID - const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; + const u16vec2 row_idx = row_ids[loadc_b + l]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; #else const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; @@ -808,7 +818,7 @@ void main() { buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w); #elif LOAD_VEC_B == 4 #ifdef MUL_MAT_ID - const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; + const u16vec2 row_idx = row_ids[loadc_b + l]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; #else const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; @@ -827,7 +837,7 @@ void main() { #else const uint row_i = ic * BN + loadc_b + l; if (row_i < _ne1 && block + loadr_b < end_k) { - const u16vec2 row_idx = row_ids[row_i]; + const u16vec2 row_idx = row_ids[loadc_b + l]; buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]); } else { buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f); @@ -881,6 +891,20 @@ void main() { barrier(); } +#if defined(ACC_TYPE_MAX) +#ifdef COOPMAT + [[unroll]] for (uint j = 0; j < cms_per_row * cms_per_col; j++) { + [[unroll]] for (uint i = 0; i < sums[j].length(); ++i) { + sums[j][i] = clamp(sums[j][i], -ACC_TYPE_MAX, ACC_TYPE_MAX); + } + } +#else + [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) { + sums[i] = clamp(sums[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); + } +#endif +#endif + const uint dr = ir * BM + warp_r * WM; const uint dc = ic * BN + warp_c * WN; @@ -898,7 +922,7 @@ void main() { const uint row_i = dc + cm_col * TN + col + store_c; if (row_i >= _ne1) break; - const u16vec2 row_idx = row_ids[row_i]; + const u16vec2 row_idx = row_ids[row_i - ic * BN]; if (dr + cm_row * TM + store_r < p.M) { data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]); @@ -948,7 +972,7 @@ void main() { const uint row_i = dc_warp + cc; if (row_i >= _ne1) break; - const u16vec2 row_idx = row_ids[row_i]; + const u16vec2 row_idx = row_ids[row_i - ic * BN]; #endif // MUL_MAT_ID [[unroll]] for (uint cr = 0; cr < TM; cr++) { #ifdef MUL_MAT_ID diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp index 4d16eb0791ddc..69ac38fd4196c 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp @@ -93,7 +93,7 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID layout (binding = 3) readonly buffer IDS {int data_ids[];}; -shared u16vec4 row_ids[4096]; +shared u16vec4 row_ids[BN]; layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufB { B_TYPE b[]; @@ -111,7 +111,7 @@ B_TYPE decodeFuncB(const in decodeBufB bl, const in uint blockCoords[2], const i return B_TYPE(0.0); } - const u16vec4 row_idx = row_ids[row_i]; + const u16vec4 row_idx = row_ids[row_i & (BN - 1)]; B_TYPE ret = data_b[row_idx.y * p.batch_stride_b + row_idx.x * p.stride_b + blockCoords[1]]; return ret; @@ -123,14 +123,14 @@ D_TYPE perElemOpD(const in uint32_t r, const in uint32_t c, const in D_TYPE elem uint dc = ic * BN + c; if (dr < p.M && dc < _ne1) { - uint row_i = dc; + uint row_i = c; const u16vec4 row_idx = row_ids[row_i]; data_d[row_idx.y * p.batch_stride_d + row_idx.z * p.stride_d + dr] = elem; } return elem; } -void load_row_ids(uint expert_idx, bool nei0_is_pow2) { +void load_row_ids(uint expert_idx, bool nei0_is_pow2, uint ic) { _ne1 = 0; uint num_elements = p.nei1 * p.nei0; uint nei0shift = findLSB(p.nei0); @@ -180,11 +180,14 @@ void load_row_ids(uint expert_idx, bool nei0_is_pow2) { barrier(); uint idx = subgroup_base + subgroupBallotExclusiveBitCount(ballot); - if (in_range && id == expert_idx) { - row_ids[_ne1 + idx] = u16vec4(fastmod(ii0, p.ne11), ii1, ii0, 0); + if (in_range && id == expert_idx && _ne1 + idx >= ic * BN && _ne1 + idx < (ic + 1) * BN) { + row_ids[_ne1 + idx - ic * BN] = u16vec4(fastmod(ii0, p.ne11), ii1, ii0, 0); } _ne1 += total; iter &= 15; + if (_ne1 >= (ic + 1) * BN) { + break; + } } barrier(); } @@ -218,9 +221,9 @@ void main() { #ifdef MUL_MAT_ID if (bitCount(p.nei0) == 1) { - load_row_ids(expert_idx, true); + load_row_ids(expert_idx, true, ic); } else { - load_row_ids(expert_idx, false); + load_row_ids(expert_idx, false, ic); } // Workgroup has no work @@ -346,6 +349,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover4, ir * BM, BM), tensorViewTranspose); @@ -385,6 +392,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover2, ir * BM, BM), tensorViewTranspose); @@ -425,6 +436,10 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); block_k += BK; } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + coopmat mat_d = coopmat(sum); coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BN, ir * BM, BM), tensorViewTranspose); @@ -441,18 +456,111 @@ void main() { tensorLayoutBClamp = setTensorLayoutStrideNV(tensorLayoutBClamp, stride_b, 1); - coopmat sum; - sum = coopmat(0.0); - uint k_iters = (end_k - start_k + BK - 1) / BK; fetch_scales(ir * BM, pos_a, stride_a, start_k, tid, false); + store_scales(tid); + +#ifdef MUL_MAT_ID + if (enable_smaller_matrices && ic * BN + BNover4 >= _ne1) { + coopmat sum; + sum = coopmat(0.0); + + [[dont_unroll]] + for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { + + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { + fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); + } + + if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } else { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } + } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + + // Convert from ACC_TYPE to D_TYPE + coopmat mat_d; + mat_d = coopmat(sum); + + // Call callback to store each element, remapping row through shared memory + coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic); + return; + } + if (enable_smaller_matrices && ic * BN + BNover2 >= _ne1) { + coopmat sum; + sum = coopmat(0.0); + + [[dont_unroll]] + for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { + + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { + fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); + } + + if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } else { + coopmat mat_a; + coopmat mat_b; + + coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA); + coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB); + + sum = coopMatMulAdd(mat_a, mat_b, sum); + } + } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif + + // Convert from ACC_TYPE to D_TYPE + coopmat mat_d; + mat_d = coopmat(sum); + + // Call callback to store each element, remapping row through shared memory + coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic); + return; + } +#endif + coopmat sum; + sum = coopmat(0.0); [[dont_unroll]] for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) { - store_scales(tid); - if (block_k + BK < end_k) { + if ((block_k % QUANT_K) == 0) { + store_scales(tid); + } + if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) { fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false); } @@ -482,6 +590,9 @@ void main() { sum = coopMatMulAdd(mat_a, mat_b, sum); } } +#if defined(ACC_TYPE_MAX) + [[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } +#endif // Convert from ACC_TYPE to D_TYPE coopmat mat_d; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp index 83de90eb7e0f2..f36add62a9ef6 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp @@ -28,7 +28,7 @@ layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];}; #if defined(A_TYPE_PACKED32) layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];}; #endif -layout (binding = 1) readonly buffer B {block_q8_1_packed32 data_b[];}; +layout (binding = 1) readonly buffer B {block_q8_1_x4_packed128 data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID @@ -98,7 +98,7 @@ shared FLOAT_TYPE_VEC2 buf_b_ds[BN]; #endif #define LOAD_VEC_A (4 * QUANT_R) -#define LOAD_VEC_B 4 +#define LOAD_VEC_B 16 #ifdef MUL_MAT_ID shared u16vec2 row_ids[4096]; @@ -270,15 +270,22 @@ void main() { const uint iqs = idx & 0x7; #else const uint ib = pos_b_ib + (loadc_b + l) * p.stride_b / BK; + const uint ib_outer = ib / 4; + const uint ib_inner = ib % 4; + const uint iqs = loadr_b; #endif const uint buf_ib = loadc_b + l; if (iqs == 0) { - buf_b_ds[buf_ib] = FLOAT_TYPE_VEC2(data_b[ib].ds); + buf_b_ds[buf_ib] = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]); } - buf_b_qs[buf_ib * SHMEM_STRIDE + iqs] = data_b[ib].qs[iqs]; + const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs]; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 ] = values.x; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 1] = values.y; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 2] = values.z; + buf_b_qs[buf_ib * SHMEM_STRIDE + iqs * 4 + 3] = values.w; } barrier(); @@ -349,7 +356,7 @@ void main() { cache_b_qs[cc * (BK / 4) + idx_k]); } - sums[sums_idx] += mul_q8_1(q_sum, cache_a_dm[cache_a_idx], cache_b_ds[cc]); + sums[sums_idx] += mul_q8_1(q_sum, cache_a_dm[cache_a_idx], cache_b_ds[cc], 1); } } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp index 34e8db97704ee..cdfb230f4e760 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp @@ -16,8 +16,8 @@ i32vec2 repack(uint ib, uint iqs) { (vui >> 4) & 0x0F0F0F0F); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { - return ACC_TYPE(da * (float(q_sum) * dsb.x - 8.0f * dsb.y)); +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y)); } #endif @@ -29,8 +29,8 @@ i32vec2 repack(uint ib, uint iqs) { (vui >> 4) & 0x0F0F0F0F); } -ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) { - return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y); +ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor); } #endif @@ -50,8 +50,8 @@ i32vec2 repack(uint ib, uint iqs) { return i32vec2(v0, v1); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { - return ACC_TYPE(da * (float(q_sum) * dsb.x - 16.0f * dsb.y)); +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y)); } #endif @@ -69,8 +69,8 @@ i32vec2 repack(uint ib, uint iqs) { return i32vec2(v0, v1); } -ACC_TYPE mul_q8_1(int32_t q_sum, vec2 dma, vec2 dsb) { - return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y); +ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) { + return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor); } #endif @@ -81,7 +81,7 @@ int32_t repack(uint ib, uint iqs) { data_a[ib].qs[iqs * 2 + 1])); } -ACC_TYPE mul_q8_1(int32_t q_sum, float da, vec2 dsb) { +ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) { return ACC_TYPE(float(q_sum) * da * dsb.x); } #endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp index e2e020fec2c6a..145c9fbdc9fee 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp @@ -3,6 +3,15 @@ #extension GL_EXT_control_flow_attributes : require #extension GL_EXT_shader_16bit_storage : require +#ifdef USE_SUBGROUPS +#extension GL_KHR_shader_subgroup_basic : require +#extension GL_KHR_shader_subgroup_clustered : require + +#define INVOCATION_ID gl_SubgroupInvocationID.x +#else +#define INVOCATION_ID gl_LocalInvocationID.x +#endif + layout (push_constant) uniform parameter { uint ne; @@ -14,13 +23,19 @@ layout(constant_id = 0) const uint GROUP_SIZE = 32; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {vec4 data_a[];}; +#ifndef QBLOCK_X4 layout (binding = 1) writeonly buffer D {block_q8_1_packed32 data_b[];}; +#else +layout (binding = 1) writeonly buffer D {block_q8_1_x4 data_b[];}; +#endif +#ifndef USE_SUBGROUPS shared float shmem[GROUP_SIZE]; +#endif void quantize() { const uint wgid = gl_WorkGroupID.x; - const uint tid = gl_LocalInvocationID.x; + const uint tid = INVOCATION_ID; // Each thread handles a vec4, so 8 threads handle a block const uint blocks_per_group = GROUP_SIZE / 8; @@ -30,9 +45,19 @@ void quantize() { const uint ib = wgid * blocks_per_group + block_in_wg; const uint iqs = tid % 8; +#ifndef QBLOCK_X4 if (ib >= gl_NumWorkGroups.x * blocks_per_group) { return; } +#else + const uint ibx4_outer = ib / 4; + const uint ibx4_inner = ib % 4; + + const uint required_x4_blocks = (p.ne + 127) / 128; + if (ibx4_outer >= required_x4_blocks) { + return; + } +#endif const uint a_idx = ib * 8 + iqs; @@ -40,7 +65,9 @@ void quantize() { const vec4 abs_vals = abs(vals); // Find absolute max for each block - shmem[tid] = max(max(abs_vals.x, abs_vals.y), max(abs_vals.z, abs_vals.w)); + const float thread_max = max(max(abs_vals.x, abs_vals.y), max(abs_vals.z, abs_vals.w)); +#ifndef USE_SUBGROUPS + shmem[tid] = thread_max; barrier(); [[unroll]] for (uint s = 4; s > 0; s >>= 1) { if (iqs < s) { @@ -50,14 +77,28 @@ void quantize() { } const float amax = shmem[block_in_wg * 8]; +#else + const float amax = subgroupClusteredMax(thread_max, 8); +#endif + const float d = amax / 127.0; const float d_inv = d != 0.0 ? 1.0 / d : 0.0; vals = round(vals * d_inv); + +#ifndef QBLOCK_X4 data_b[ib].qs[iqs] = pack32(i8vec4(round(vals))); +#else + data_b[ibx4_outer].qs[ibx4_inner * 8 + iqs] = pack32(i8vec4(round(vals))); +#endif + +#ifndef USE_SUBGROUPS barrier(); +#endif // Calculate the sum for each block - shmem[tid] = vals.x + vals.y + vals.z + vals.w; + const float thread_sum = vals.x + vals.y + vals.z + vals.w; +#ifndef USE_SUBGROUPS + shmem[tid] = thread_sum; barrier(); [[unroll]] for (uint s = 4; s > 0; s >>= 1) { if (iqs < s) { @@ -65,10 +106,19 @@ void quantize() { } barrier(); } +#else + const float sum = subgroupClusteredAdd(thread_sum, 8); +#endif if (iqs == 0) { +#ifndef USE_SUBGROUPS const float sum = shmem[tid]; +#endif +#ifndef QBLOCK_X4 data_b[ib].ds = f16vec2(vec2(d, sum * d)); +#else + data_b[ibx4_outer].ds[ibx4_inner] = f16vec2(vec2(d, sum * d)); +#endif } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp index a36c33e26764b..408722c87885a 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp @@ -207,6 +207,18 @@ struct block_q8_1_packed32 int32_t qs[8]; }; +// 4 blocks in one to allow 16-byte/128-bit alignment and loads +struct block_q8_1_x4 +{ + f16vec2 ds[4]; + int32_t qs[32]; +}; +struct block_q8_1_x4_packed128 +{ + f16vec2 ds[4]; + ivec4 qs[8]; +}; + // K-quants #define QUANT_K_Q2_K 256 diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 50a27748317be..1263a70e4f757 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -68,6 +68,12 @@ const std::vector type_names = { "bf16", }; +enum MatMulIdType { + NONE, + DEFAULT, + SUBGROUP, +}; + namespace { void execute_command(const std::string& command, std::string& stdout_str, std::string& stderr_str) { #ifdef _WIN32 @@ -200,6 +206,22 @@ bool string_ends_with(const std::string& str, const std::string& suffix) { return std::equal(suffix.rbegin(), suffix.rend(), str.rbegin()); } +bool is_quantized_type(const std::string& type_name) { + return type_name != "f32" && type_name != "f16" && type_name != "bf16"; +} + +bool is_legacy_quant(const std::string& type_name) { + return type_name == "q4_0" || type_name == "q4_1" || type_name == "q5_0" || type_name == "q5_1" || type_name == "q8_0"; +} + +bool is_k_quant(const std::string& type_name) { + return string_ends_with(type_name, "_k"); +} + +bool is_iq_quant(const std::string& type_name) { + return string_starts_with(type_name, "iq"); +} + static const char path_separator = '/'; std::string join_paths(const std::string& path1, const std::string& path2) { @@ -293,7 +315,7 @@ void string_to_spv(const std::string& _name, const std::string& in_fname, const compiles.push_back(std::async(string_to_spv_func, _name, in_fname, defines, fp16, coopmat, coopmat2, f16acc)); } -void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool f16acc) { +void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool coopmat2, bool f16acc) { std::string load_vec = coopmat2 ? "1" : fp16 ? "8" : "4"; std::string aligned_b_type_f32 = coopmat2 ? "float" : fp16 ? "mat2x4" : "vec4"; std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4"; @@ -303,9 +325,13 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool }; std::string shader_name = "matmul"; - if (matmul_id) { + if (matmul_id_type == MatMulIdType::DEFAULT) { base_dict["MUL_MAT_ID"] = "1"; shader_name = "matmul_id"; + } else if (matmul_id_type == MatMulIdType::SUBGROUP) { + base_dict["MUL_MAT_ID"] = "1"; + base_dict["MUL_MAT_ID_USE_SUBGROUPS"] = "1"; + shader_name = "matmul_id_subgroup"; } if (fp16) { @@ -313,6 +339,9 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool } base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float"; + if (f16acc) { + base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\""; + } if (coopmat) { base_dict["COOPMAT"] = "1"; @@ -389,7 +418,7 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool } #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) - if (!coopmat && !coopmat2 && !matmul_id && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) { + if (!coopmat && !coopmat2 && matmul_id_type == MatMulIdType::NONE && is_legacy_quant(tname)) { string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc); } #endif @@ -401,32 +430,38 @@ void process_shaders() { std::map base_dict = {{"FLOAT_TYPE", "float"}}; // matmul - for (const auto& matmul_id : {false, true}) { + for (const MatMulIdType& matmul_id_type : {MatMulIdType::NONE, MatMulIdType::DEFAULT, MatMulIdType::SUBGROUP}) { // No coopmats // fp32 - matmul_shaders(false, matmul_id, false, false, false); + matmul_shaders(false, matmul_id_type, false, false, false); // fp16, fp32acc and fp16acc - matmul_shaders(true, matmul_id, false, false, false); - matmul_shaders(true, matmul_id, false, false, true); + matmul_shaders(true, matmul_id_type, false, false, false); + matmul_shaders(true, matmul_id_type, false, false, true); + if (matmul_id_type != MatMulIdType::DEFAULT) { #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) - // Coopmat, fp32acc and fp16acc - matmul_shaders(true, matmul_id, true, false, false); - matmul_shaders(true, matmul_id, true, false, true); + // Coopmat, fp32acc and fp16acc + matmul_shaders(true, matmul_id_type, true, false, false); + matmul_shaders(true, matmul_id_type, true, false, true); #endif #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) - // Coopmat2, fp32acc and fp16acc - matmul_shaders(true, matmul_id, false, true, false); - matmul_shaders(true, matmul_id, false, true, true); + // Coopmat2, fp32acc and fp16acc + matmul_shaders(true, matmul_id_type, false, true, false); + matmul_shaders(true, matmul_id_type, false, true, true); #endif + } } // flash attention for (const auto& f16acc : {false, true}) { - std::string acctype = f16acc ? "float16_t" : "float"; - std::string acctypev4 = f16acc ? "f16vec4" : "vec4"; + std::map fa_base_dict = base_dict; + fa_base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float"; + fa_base_dict["ACC_TYPEV4"] = f16acc ? "f16vec4" : "vec4"; + if (f16acc) { + fa_base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\""; + } for (const auto& tname : type_names) { if (tname == "f32") { @@ -437,30 +472,30 @@ void process_shaders() { #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, true, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, true, f16acc); } else { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc); } #endif #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"COOPMAT", "1"}}), true, true, false, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"COOPMAT", "1"}}), true, true, false, f16acc); } else if (tname == "q4_0" || tname == "q8_0") { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc); } #endif if (tname == "f16") { string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp", - merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, false, f16acc); + merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, false, f16acc); } else if (tname == "q4_0" || tname == "q8_0") { std::string data_a_key = "DATA_A_" + to_uppercase(tname); string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp", - merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc); + merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc); } } } @@ -476,8 +511,20 @@ void process_shaders() { string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); + // mul mat vec with integer dot product +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + if (is_legacy_quant(tname)) { + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}})); + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); + string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); + } +#endif + // Dequant shaders if (tname != "f16" && tname != "bf16") { string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}})); @@ -560,7 +607,12 @@ void process_shaders() { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); string_to_spv("fa_split_k_reduce", "flash_attn_split_k_reduce.comp", {}); + string_to_spv("quantize_q8_1", "quantize_q8_1.comp", {}); + string_to_spv("quantize_q8_1_subgroup", "quantize_q8_1.comp", {{"USE_SUBGROUPS", "1"}}); + + string_to_spv("quantize_q8_1_x4", "quantize_q8_1.comp", {{"QBLOCK_X4", "1"}}); + string_to_spv("quantize_q8_1_x4_subgroup", "quantize_q8_1.comp", {{"QBLOCK_X4", "1"}, {"USE_SUBGROUPS", "1"}}); string_to_spv("mul_f32", "mul.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); @@ -802,12 +854,21 @@ void write_output_files() { fputs(len.c_str(), src); } - for (const std::string& btype : {"f16", "f32"}) { + std::vector btypes = {"f16", "f32"}; + +#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + btypes.push_back("q8_1"); +#endif + + for (const std::string& btype : btypes) { for (const auto& tname : type_names) { - fprintf(hdr, "extern unsigned char *arr_dmmv_%s_%s_f32_data[2];\n", tname.c_str(), btype.c_str()); - fprintf(hdr, "extern uint64_t arr_dmmv_%s_%s_f32_len[2];\n", tname.c_str(), btype.c_str()); - std::string data = "unsigned char *arr_dmmv_" + tname + "_" + btype + "_f32_data[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_data};\n"; - std::string len = "uint64_t arr_dmmv_" + tname + "_" + btype + "_f32_len[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_len};\n"; + if (btype == "q8_1" && !is_legacy_quant(tname)) { + continue; + } + fprintf(hdr, "extern unsigned char *arr_dmmv_%s_%s_f32_data[3];\n", tname.c_str(), btype.c_str()); + fprintf(hdr, "extern uint64_t arr_dmmv_%s_%s_f32_len[3];\n", tname.c_str(), btype.c_str()); + std::string data = "unsigned char *arr_dmmv_" + tname + "_" + btype + "_f32_data[3] = {mul_mat_vec_" + tname + "_" + btype + "_f32_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_no_shmem_data};\n"; + std::string len = "uint64_t arr_dmmv_" + tname + "_" + btype + "_f32_len[3] = {mul_mat_vec_" + tname + "_" + btype + "_f32_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_no_shmem_len};\n"; fputs(data.c_str(), src); fputs(len.c_str(), src); } diff --git a/ggml/src/ggml-webgpu/ggml-webgpu.cpp b/ggml/src/ggml-webgpu/ggml-webgpu.cpp index 32f1e304e1e63..e5df883c1367e 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu.cpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu.cpp @@ -611,6 +611,8 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) { case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_RESHAPE: return false; case GGML_OP_CPY: { @@ -1062,6 +1064,8 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_RESHAPE: return true; case GGML_OP_CPY: case GGML_OP_SET_ROWS: diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp index 53504399c57f4..af57a88c60882 100644 --- a/ggml/src/gguf.cpp +++ b/ggml/src/gguf.cpp @@ -273,7 +273,7 @@ struct gguf_reader { } bool read(std::string & dst) const { - uint64_t size = -1; + uint64_t size = 0; if (!read(size)) { return false; } @@ -523,7 +523,7 @@ struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_par // tensor shape { - uint32_t n_dims = -1; + uint32_t n_dims = 0; ok = ok && gr.read(n_dims); if (n_dims > GGML_MAX_DIMS) { GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index d03a02c7bf921..6156d35c2ad67 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -231,8 +231,10 @@ class Tokenizer: MIDDLE_ID = "tokenizer.ggml.middle_token_id" class Adapter: - TYPE = "adapter.type" - LORA_ALPHA = "adapter.lora.alpha" + TYPE = "adapter.type" + LORA_ALPHA = "adapter.lora.alpha" + LORA_TASK_NAME = "adapter.lora.task_name" + LORA_PROMPT_PREFIX = "adapter.lora.prompt_prefix" class IMatrix: CHUNK_COUNT = "imatrix.chunk_count" @@ -315,6 +317,7 @@ class MODEL_ARCH(IntEnum): NOMIC_BERT_MOE = auto() NEO_BERT = auto() JINA_BERT_V2 = auto() + JINA_BERT_V3 = auto() BLOOM = auto() STABLELM = auto() QWEN = auto() @@ -364,6 +367,7 @@ class MODEL_ARCH(IntEnum): T5ENCODER = auto() JAIS = auto() NEMOTRON = auto() + NEMOTRON_H = auto() EXAONE = auto() EXAONE4 = auto() GRANITE = auto() @@ -647,6 +651,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.NOMIC_BERT_MOE: "nomic-bert-moe", MODEL_ARCH.NEO_BERT: "neo-bert", MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2", + MODEL_ARCH.JINA_BERT_V3: "jina-bert-v3", MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.QWEN: "qwen", @@ -696,6 +701,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.T5ENCODER: "t5encoder", MODEL_ARCH.JAIS: "jais", MODEL_ARCH.NEMOTRON: "nemotron", + MODEL_ARCH.NEMOTRON_H: "nemotron_h", MODEL_ARCH.EXAONE: "exaone", MODEL_ARCH.EXAONE4: "exaone4", MODEL_ARCH.GRANITE: "granite", @@ -1234,6 +1240,18 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.LAYER_OUT_NORM, MODEL_TENSOR.CLS, ], + MODEL_ARCH.JINA_BERT_V3: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.TOKEN_TYPES, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_OUT_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.LAYER_OUT_NORM, + ], MODEL_ARCH.MPT: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -2281,6 +2299,25 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.NEMOTRON_H: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.SSM_IN, + MODEL_TENSOR.SSM_CONV1D, + MODEL_TENSOR.SSM_DT, + MODEL_TENSOR.SSM_A, + MODEL_TENSOR.SSM_D, + MODEL_TENSOR.SSM_NORM, + MODEL_TENSOR.SSM_OUT, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.EXAONE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -2850,6 +2887,7 @@ class VisionProjectorType: QWEN25O = "qwen2.5o" # omni VOXTRAL = "voxtral" LFM2 = "lfm2" + KIMIVL = "kimivl" # Items here are (block size, type size) diff --git a/gguf-py/gguf/scripts/gguf_convert_endian.py b/gguf-py/gguf/scripts/gguf_convert_endian.py index 0e0febaa79178..211a3f536a6a9 100755 --- a/gguf-py/gguf/scripts/gguf_convert_endian.py +++ b/gguf-py/gguf/scripts/gguf_convert_endian.py @@ -19,6 +19,61 @@ logger = logging.getLogger("gguf-convert-endian") +def byteswap_q4_0(tensor, block_offs): + # Each block_q4_0 consists of an f16 delta (scaling factor) followed by 16 int8 quantizations. + + # Byte-Swap f16 sized delta field + delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + +def byteswap_q8_0(tensor, block_offs): + # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations. + + # Byte-Swap f16 sized delta field + delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + +def byteswap_q4_k(tensor, block_offs): + # Each block_q4_k consists of 2 f16 values followed by 140 int8 values. + + # Byte-Swap f16 sized fields + delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + +def byteswap_q6_k(tensor, block_offs): + # Each block_q6_k consists of 208 int8 values followed by 1 f16 value. + + # Byte-Swap f16 sized field + delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + +byteswap_tensors = { + gguf.GGMLQuantizationType.Q4_0: { + "block_size": 18, # 18 bytes = + 16 * + "byteswap_func": byteswap_q4_0, + }, + gguf.GGMLQuantizationType.Q8_0: { + "block_size": 34, # 34 bytes = + 32 * + "byteswap_func": byteswap_q8_0, + }, + gguf.GGMLQuantizationType.Q4_K: { + "block_size": 144, # 144 bytes = 2 * + 140 * + "byteswap_func": byteswap_q4_k, + }, + gguf.GGMLQuantizationType.Q6_K: { + "block_size": 210, # 210 bytes = + 208 * + "byteswap_func": byteswap_q6_k, + }, +} + + def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None: file_endian = reader.endianess.name if reader.byte_order == 'S': @@ -32,13 +87,11 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None sys.exit(0) logger.info("* Checking tensors for conversion compatibility") for tensor in reader.tensors: - if tensor.tensor_type not in ( - gguf.GGMLQuantizationType.F32, - gguf.GGMLQuantizationType.F16, - gguf.GGMLQuantizationType.Q8_0, - gguf.GGMLQuantizationType.Q4_K, - gguf.GGMLQuantizationType.Q6_K, - ): + if tensor.tensor_type not in byteswap_tensors and \ + tensor.tensor_type not in ( + gguf.GGMLQuantizationType.F32, + gguf.GGMLQuantizationType.F16, + ): raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}") logger.info(f"* Preparing to convert from {file_endian} to {order}") if args.dry_run: @@ -72,78 +125,29 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None part.byteswap(inplace=True) # Byte-swap tensor data if necessary - if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0: - # Handle Q8_0 tensor blocks (block_q8_0) - # Specific handling of block_q8_0 is required. - # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations. - - block_size = 34 # 34 bytes = + 32 * - - n_blocks = len(tensor.data) // block_size - for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)): - block_offs = block_num * block_size - - # Byte-Swap f16 sized delta field - delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) - delta.byteswap(inplace=True) - - # Byte-Swap Q8 weights - if block_num % 100000 == 0: - inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]") - - elif tensor.tensor_type == gguf.GGMLQuantizationType.Q4_K: - # Handle Q4_K tensor blocks (block_q4_k) - # Specific handling of block_q4_k is required. - # Each block_q4_k consists of 2 f16 values followed by 140 int8 values. - + if tensor.tensor_type in byteswap_tensors: # first flatten structure + oldshape = tensor.data.shape newshape = 1 for i in tensor.data.shape: newshape *= i tensor.data.resize(newshape) - block_size = 144 - n_blocks = len(tensor.data) // block_size - for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)): - block_offs = block_num * block_size - - # Byte-Swap f16 sized fields - delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) - delta.byteswap(inplace=True) - - delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16) - delta.byteswap(inplace=True) - - # Byte-Swap - if block_num % 100000 == 0: - inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]") - - elif tensor.tensor_type == gguf.GGMLQuantizationType.Q6_K: - # Handle Q6_K tensor blocks (block_q6_k) - # Specific handling of block_q6_k is required. - # Each block_q6_k consists of 208 int8 values followed by 1 f16 value. - - # first flatten structure - newshape = 1 - for i in tensor.data.shape: - newshape *= i - - tensor.data.resize(newshape) + block_size = byteswap_tensors[tensor.tensor_type]["block_size"] + byteswap_func = byteswap_tensors[tensor.tensor_type]["byteswap_func"] - block_size = 210 n_blocks = len(tensor.data) // block_size for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)): block_offs = block_num * block_size - # Byte-Swap f16 sized field - delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16) - delta.byteswap(inplace=True) + byteswap_func(tensor, block_offs) - # Byte-Swap if block_num % 100000 == 0: inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]") + # restore old shape in case it's ever used + tensor.data.resize(oldshape) else: # Handle other tensor types tensor.data.byteswap(inplace=True) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 87edaa3232ccc..497f48809f8a7 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -191,6 +191,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_proj", # llama4 "model.transformer.blocks.{bid}.q_proj", # llada "layers.{bid}.self_attn.q_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.q_proj", # nemotron-h ), # Attention key @@ -209,6 +210,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_proj", # llama4 "model.transformer.blocks.{bid}.k_proj", # llada "layers.{bid}.self_attn.k_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.k_proj", # nemotron-h ), # Attention value @@ -226,6 +228,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.v_proj", # llama4 "model.transformer.blocks.{bid}.v_proj", # llada "layers.{bid}.self_attn.v_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.v_proj", # nemotron-h ), # Attention output @@ -260,6 +263,7 @@ class TensorNameMap: "transformer_encoder.{bid}.wo", # neobert "model.transformer.blocks.{bid}.attn_out", # llada "layers.{bid}.self_attn.o_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.o_proj", # nemotron-h ), # Attention output norm @@ -387,6 +391,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.up", # smallthinker "model.transformer.blocks.{bid}.up_proj", # llada "layers.{bid}.mlp.up_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.up_proj", # nemotron-h ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -427,7 +432,6 @@ class TensorNameMap: "model.layers.{bid}.residual_mlp.w1", # arctic "transformer.h.{bid}.mlp.c_fc_0", # exaone "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid - "model.layers.{bid}.block_sparse_moe.gate", # smallthinker "model.transformer.blocks.{bid}.ff_proj", # llada "layers.{bid}.mlp.gate_proj", # qwen3-embedding ), @@ -481,6 +485,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.down", # smallthinker "model.transformer.blocks.{bid}.ff_out", # llada "layers.{bid}.mlp.down_proj", # qwen3-embedding + "backbone.layers.{bid}.mixer.down_proj", # nemotron-h ), MODEL_TENSOR.FFN_DOWN_EXP: ( @@ -1123,6 +1128,7 @@ class TensorNameMap: "vision_encoder.patch_conv", # pixtral "vision_model.patch_embedding.linear", # llama 4 "visual.patch_embed.proj", # qwen2vl + "vision_tower.patch_embed.proj", # kimi-vl ), MODEL_TENSOR.V_ENC_EMBD_POS: ( @@ -1131,6 +1137,7 @@ class TensorNameMap: "vpm.embeddings.position_embedding", "model.vision_model.embeddings.position_embedding", # SmolVLM "vision_model.positional_embedding_vlm", # llama 4 + "vision_tower.patch_embed.pos_emb", # kimi-vl ), MODEL_TENSOR.V_ENC_ATTN_Q: ( @@ -1142,6 +1149,7 @@ class TensorNameMap: "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral "visual.blocks.{bid}.attn.q", # qwen2vl, generated + "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated ), MODEL_TENSOR.V_ENC_ATTN_Q_NORM: ( @@ -1158,6 +1166,7 @@ class TensorNameMap: "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral "visual.blocks.{bid}.attn.k", # qwen2vl, generated + "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated ), MODEL_TENSOR.V_ENC_ATTN_K_NORM: ( @@ -1174,6 +1183,7 @@ class TensorNameMap: "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral "visual.blocks.{bid}.attn.v", # qwen2vl, generated + "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated ), MODEL_TENSOR.V_ENC_INPUT_NORM: ( @@ -1186,6 +1196,7 @@ class TensorNameMap: "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral "vision_model.model.layers.{bid}.input_layernorm", # llama4 "visual.blocks.{bid}.norm1", # qwen2vl + "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1) ), MODEL_TENSOR.V_ENC_ATTN_O: ( @@ -1198,6 +1209,7 @@ class TensorNameMap: "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral "visual.blocks.{bid}.attn.proj", # qwen2vl + "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl ), MODEL_TENSOR.V_ENC_POST_ATTN_NORM: ( @@ -1210,6 +1222,7 @@ class TensorNameMap: "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral "visual.blocks.{bid}.norm2", # qwen2vl + "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1) ), MODEL_TENSOR.V_ENC_FFN_UP: ( @@ -1222,6 +1235,7 @@ class TensorNameMap: "vision_model.model.layers.{bid}.mlp.fc1", # llama4 "visual.blocks.{bid}.mlp.fc1", # qwen2vl "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl + "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1) ), MODEL_TENSOR.V_ENC_FFN_GATE: ( @@ -1240,6 +1254,7 @@ class TensorNameMap: "vision_model.model.layers.{bid}.mlp.fc2", # llama4 "visual.blocks.{bid}.mlp.fc2", # qwen2vl "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl + "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1) ), MODEL_TENSOR.V_LAYER_SCALE_1: ( @@ -1264,6 +1279,7 @@ class TensorNameMap: "model.vision_model.post_layernorm", # SmolVLM "vision_model.layernorm_post", # llama4 "visual.merger.ln_q", # qwen2vl + "vision_tower.encoder.final_layernorm", # kimi-vl ), MODEL_TENSOR.V_MM_INP_PROJ: ( @@ -1273,6 +1289,7 @@ class TensorNameMap: MODEL_TENSOR.V_MM_INP_NORM: ( "multi_modal_projector.norm", "multi_modal_projector.layer_norm", + "multi_modal_projector.pre_norm", "pre_mm_projector_norm", ), diff --git a/include/llama.h b/include/llama.h index c5622cc16b4c2..11f8a363a5733 100644 --- a/include/llama.h +++ b/include/llama.h @@ -179,6 +179,14 @@ extern "C" { LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1, }; + enum llama_flash_attn_type { + LLAMA_FLASH_ATTN_TYPE_AUTO = -1, + LLAMA_FLASH_ATTN_TYPE_DISABLED = 0, + LLAMA_FLASH_ATTN_TYPE_ENABLED = 1, + }; + + LLAMA_API const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type); + enum llama_split_mode { LLAMA_SPLIT_MODE_NONE = 0, // single GPU LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs @@ -198,7 +206,7 @@ extern "C" { llama_token_data * data; size_t size; int64_t selected; // this is the index in the data array (i.e. not the token id) - bool sorted; + bool sorted; // note: do not assume the data is sorted - always check this flag } llama_token_data_array; typedef bool (*llama_progress_callback)(float progress, void * user_data); @@ -303,6 +311,7 @@ extern "C" { enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id enum llama_attention_type attention_type; // attention type to use for embeddings + enum llama_flash_attn_type flash_attn_type; // when to enable Flash Attention // ref: https://github.com/ggml-org/llama.cpp/pull/2054 float rope_freq_base; // RoPE base frequency, 0 = from model @@ -329,7 +338,6 @@ extern "C" { // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value. bool embeddings; // if true, extract embeddings (together with logits) bool offload_kqv; // offload the KQV ops (including the KV cache) to GPU - bool flash_attn; // use flash attention [EXPERIMENTAL] bool no_perf; // measure performance timings bool op_offload; // offload host tensor operations to device bool swa_full; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) @@ -553,6 +561,24 @@ extern "C" { struct llama_model * model, const char * path_lora); + // Functions to access the adapter's GGUF metadata scalar values + // - The functions return the length of the string on success, or -1 on failure + // - The output string is always null-terminated and cleared on failure + // - When retrieving a string, an extra byte must be allocated to account for the null terminator + // - GGUF array values are not supported by these functions + + // Get metadata value as a string by key name + LLAMA_API int32_t llama_adapter_meta_val_str(const struct llama_adapter_lora * adapter, const char * key, char * buf, size_t buf_size); + + // Get the number of metadata key/value pairs + LLAMA_API int32_t llama_adapter_meta_count(const struct llama_adapter_lora * adapter); + + // Get metadata key name by index + LLAMA_API int32_t llama_adapter_meta_key_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size); + + // Get metadata value as a string by index + LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size); + // Manually free a LoRA adapter // Note: loaded adapters will be free when the associated model is deleted LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter); @@ -1130,11 +1156,6 @@ extern "C" { LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void); LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed); - /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. - /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first. - DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void), - "will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)"); - /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// Setting k <= 0 makes this a noop LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k); diff --git a/models/templates/ByteDance-Seed-OSS.jinja b/models/templates/ByteDance-Seed-OSS.jinja new file mode 100644 index 0000000000000..903ebaaba77ed --- /dev/null +++ b/models/templates/ByteDance-Seed-OSS.jinja @@ -0,0 +1,171 @@ +{# ----------‑‑‑ special token variables ‑‑‑---------- #} +{%- set bos_token = '' -%} +{%- set eos_token = '' -%} +{%- set pad_token = '' -%} +{%- set toolcall_begin_token = '' -%} +{%- set toolcall_end_token = '' -%} +{%- set think_begin_token = '' -%} +{%- set think_end_token = '' -%} +{%- set budget_begin_token = ''-%} +{%- set budget_end_token = ''-%} +{# -------------- reflection-interval lookup -------------- #} +{%- if not thinking_budget is defined %} +{%- set thinking_budget = -1 -%} +{%- endif -%} +{%- set budget_reflections_v05 = { + 0: 0, + 512: 128, + 1024: 256, + 2048: 512, + 4096: 512, + 8192: 1024, + 16384: 1024 +} -%} +{# Find the first gear that is greater than or equal to the thinking_budget. #} +{%- set ns = namespace(interval = None) -%} +{%- for k, v in budget_reflections_v05 | dictsort -%} + {%- if ns.interval is none and thinking_budget <= k -%} + {%- set ns.interval = v -%} + {%- endif -%} +{%- endfor -%} +{# If it exceeds the maximum gear, use the value of the last gear #} +{%- if ns.interval is none -%} + {%- set ns.interval = budget_reflections_v05[16384] -%} +{%- endif -%} +{# ---------- Preprocess the system message ---------- #} +{%- if messages[0]["role"] == "system" %} +{%- set system_message = messages[0]["content"] %} +{%- set loop_messages = messages[1:] %} +{%- else %} +{%- set loop_messages = messages %} +{%- endif %} +{# ---------- Ensure tools exist ---------- #} +{%- if not tools is defined or tools is none %} +{%- set tools = [] %} +{%- endif %} +{# tools2doc.jinja #} +{%- macro py_type(t) -%} + {%- if t == "string" -%}str + {%- elif t in ("number", "integer") -%}int + {%- elif t == "boolean" -%}bool + {%- elif t == "array" -%}list + {%- else -%}Any{%- endif -%} +{%- endmacro -%} +{# ---------- Output the system block ---------- #} +{%- if system_message is defined %} +{{ bos_token + "system\n" + system_message }} +{%- else %} +{%- if tools is iterable and tools | length > 0 %} +{{ bos_token + "system\nYou are Doubao, a helpful AI assistant. You may call one or more functions to assist with the user query." }} +{%- endif %} +{%- endif %} +{%- if use_json_tooldef is defined and use_json_tooldef %} + +{{"Tool List:\nYou are authorized to use the following tools (described in JSON Schema format). Before performing any task, you must decide how to call them based on the descriptions and parameters of these tools."}} +{{ tools | tojson(ensure_ascii=False) }} +{%- else %} +{%- for item in tools if item.type == "function" %} + + +Function: +def {{ item.function.name }}( +{%- for name, spec in item.function.parameters.properties.items() %} + {{- name }}: {{ py_type(spec.type) }}{% if not loop.last %},{% endif %} +{%- endfor %}): + """ + {{ item.function.description | trim }} + + {# ---------- Args ---------- #} + {%- if item.function.parameters.properties %} + Args: + {%- for name, spec in item.function.parameters.properties.items() %} + + - {{ name }} ({{ py_type(spec.type) }}) + {%- if name in item.function.parameters.required %} [必填]{% else %} [选填]{% endif %}: + {{- " " ~ (spec.description or "") }} + {%- endfor %} + {%- endif %} + + {# ---------- Returns ---------- #} + {%- if item.function.returns is defined + and item.function.returns.properties is defined + and item.function.returns.properties %} + Returns: + {%- for name, spec in item.function.returns.properties.items() %} + + - {{ name }} ({{ py_type(spec.type) }}): + {{- " " ~ (spec.description or "") }} + {%- endfor %} + {%- endif %} + + """ +{%- endfor %} +{%- endif %} +{%- if tools is iterable and tools | length > 0 %} + +{{"工具调用请遵循如下格式:\n\n\nvalue_1\nThis is the value for the second parameter\nthat can span\nmultiple lines\n\n\n"}} +{%- endif %} +{# End the system block line #} +{%- if system_message is defined or tools is iterable and tools | length > 0 %} +{{ eos_token }} +{%- endif %} +{# ---------- Thinking Budget ---------- #} +{%- if thinking_budget is defined %} +{%- if thinking_budget == 0 %} +{{ bos_token+"system" }} +{{ "You are an intelligent assistant that can answer questions in one step without the need for reasoning and thinking, that is, your thinking budget is 0. Next, please skip the thinking process and directly start answering the user's questions." }} +{{ eos_token }} +{%- elif not thinking_budget == -1 %} +{{ bos_token+"system" }} +{{ "You are an intelligent assistant with reflective ability. In the process of thinking and reasoning, you need to strictly follow the thinking budget, which is "}}{{thinking_budget}}{{". That is, you need to complete your thinking within "}}{{thinking_budget}}{{" tokens and start answering the user's questions. You will reflect on your thinking process every "}}{{ns.interval}}{{" tokens, stating how many tokens have been used and how many are left."}} +{{ eos_token }} +{%- endif %} +{%- endif %} +{# ---------- List the historical messages one by one ---------- #} +{%- for message in loop_messages %} +{%- if message.role == "assistant" + and message.tool_calls is defined + and message.tool_calls is iterable + and message.tool_calls | length > 0 %} +{{ bos_token + message.role }} +{%- if message.reasoning_content is defined and message.reasoning_content is string and message.reasoning_content | trim | length > 0 %} +{{ "\n" + think_begin_token + message.reasoning_content | trim + think_end_token }} +{%- endif %} +{%- if message.content is defined and message.content is string and message.content | trim | length > 0 %} +{{ "\n" + message.content | trim + "\n" }} +{%- endif %} +{%- for tool_call in message.tool_calls %} +{%- if tool_call.function is defined %}{% set tool_call = tool_call.function %}{% endif %} +{{ "\n" + toolcall_begin_token + "\n\n" }} +{%- if tool_call.arguments is defined %} +{%- for arg_name, arg_value in tool_call.arguments | items %} +{{ "" }} +{%- set arg_value = arg_value if arg_value is string else arg_value | string %} +{{ arg_value+"\n" }} +{%- endfor %} +{%- endif %} +{{ "\n" + toolcall_end_token }} +{%- endfor %} +{{ eos_token }} +{%- elif message.role in ["user", "system"] %} +{{ bos_token + message.role + "\n" + message.content + eos_token }} +{%- elif message.role == "assistant" %} +{{ bos_token + message.role }} +{%- if message.reasoning_content is defined and message.reasoning_content is string and message.reasoning_content | trim | length > 0 %} +{{ "\n" + think_begin_token + message.reasoning_content | trim + think_end_token }} +{%- endif %} +{%- if message.content is defined and message.content is string and message.content | trim | length > 0 %} +{{ "\n" + message.content | trim + eos_token }} +{%- endif %} +{# Include the tool role #} +{%- else %} +{{ bos_token + message.role + "\n" + message.content + eos_token }} +{%- endif %} +{%- endfor %} +{# ---------- Control the model to start continuation ---------- #} +{%- if add_generation_prompt %} +{{ bos_token+"assistant\n" }} +{%- if thinking_budget == 0 %} +{{ think_begin_token + "\n" + budget_begin_token + "The current thinking budget is 0, so I will directly start answering the question." + budget_end_token + "\n" + think_end_token }} +{%- endif %} +{%- endif %} \ No newline at end of file diff --git a/scripts/compare-commits.sh b/scripts/compare-commits.sh index a28cd5e535bff..1802d6e5ef9f0 100755 --- a/scripts/compare-commits.sh +++ b/scripts/compare-commits.sh @@ -25,6 +25,12 @@ fi # verify at the start that the compare script has all the necessary dependencies installed ./scripts/compare-llama-bench.py --check +if ! command -v sqlite3 >/dev/null 2>&1; then + echo "Error: sqlite3 is not installed or not in PATH" + echo "Please install sqlite3 to use this script" + exit 1 +fi + if [ "$tool" = "llama-bench" ]; then db_file="llama-bench.sqlite" target="llama-bench" diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 2cfca66e0938c..c45c83fdb55c3 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -96,7 +96,7 @@ DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default. DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default. -GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables. +GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon ", "AMD Instinct "] # Strip prefixes for smaller tables. MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"} DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux): diff --git a/scripts/server-bench.py b/scripts/server-bench.py index a71602017340a..dbbb0939ffef9 100755 --- a/scripts/server-bench.py +++ b/scripts/server-bench.py @@ -151,12 +151,6 @@ def benchmark( if os.environ.get("LLAMA_ARG_N_PARALLEL") is None: logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32") os.environ["LLAMA_ARG_N_PARALLEL"] = "32" - if not external_server and os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None: - logger.info("LLAMA_ARG_N_GPU_LAYERS not explicitly set, using 999") - os.environ["LLAMA_ARG_N_GPU_LAYERS"] = "999" - if not external_server and os.environ.get("LLAMA_ARG_FLASH_ATTN") is None: - logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'") - os.environ["LLAMA_ARG_FLASH_ATTN"] = "true" parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL")) # type: ignore prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts) diff --git a/scripts/tool_bench.py b/scripts/tool_bench.py index d8018e2e23c0d..05d6dfc30a36d 100755 --- a/scripts/tool_bench.py +++ b/scripts/tool_bench.py @@ -323,7 +323,7 @@ def elapsed(): server.jinja = True server.ctk = ctk server.ctv = ctv - server.fa = fa + server.fa = "on" if fa else "off" server.n_predict = n_predict server.model_hf_repo = hf server.model_hf_file = None diff --git a/src/llama-adapter.cpp b/src/llama-adapter.cpp index 8d94034aed95d..772ce1b448088 100644 --- a/src/llama-adapter.cpp +++ b/src/llama-adapter.cpp @@ -163,13 +163,38 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_ // check metadata { + const gguf_context * gguf_ctx = ctx_gguf.get(); + + LLAMA_LOG_INFO("%s: Dumping metadata keys/values.\n", __func__); + + // get metadata as string + for (int i = 0; i < gguf_get_n_kv(gguf_ctx); i++) { + gguf_type type = gguf_get_kv_type(gguf_ctx, i); + const std::string type_name = + type == GGUF_TYPE_ARRAY + ? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(gguf_ctx, i)), gguf_get_arr_n(gguf_ctx, i)) + : gguf_type_name(type); + const char * name = gguf_get_key(gguf_ctx, i); + const std::string value = gguf_kv_to_str(gguf_ctx, i); + + if (type != GGUF_TYPE_ARRAY) { + adapter.gguf_kv.emplace(name, value); + } + + const size_t MAX_VALUE_LEN = 40; + std::string print_value = value.size() > MAX_VALUE_LEN ? format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()) : value; + replace_all(print_value, "\n", "\\n"); + + LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), print_value.c_str()); + } + auto get_kv_str = [&](const std::string & key) -> std::string { - int id = gguf_find_key(ctx_gguf.get(), key.c_str()); - return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id)); + int id = gguf_find_key(gguf_ctx, key.c_str()); + return id < 0 ? "" : std::string(gguf_get_val_str(gguf_ctx, id)); }; auto get_kv_f32 = [&](const std::string & key) -> float { - int id = gguf_find_key(ctx_gguf.get(), key.c_str()); - return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id); + int id = gguf_find_key(gguf_ctx, key.c_str()); + return id < 0 ? 0.0f : gguf_get_val_f32(gguf_ctx, id); }; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); @@ -383,6 +408,45 @@ llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * p return nullptr; } +int32_t llama_adapter_meta_val_str(const llama_adapter_lora * adapter, const char * key, char * buf, size_t buf_size) { + const auto & it = adapter->gguf_kv.find(key); + if (it == adapter->gguf_kv.end()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + return snprintf(buf, buf_size, "%s", it->second.c_str()); +} + +int32_t llama_adapter_meta_count(const llama_adapter_lora * adapter) { + return (int)adapter->gguf_kv.size(); +} + +int32_t llama_adapter_meta_key_by_index(const llama_adapter_lora * adapter, int i, char * buf, size_t buf_size) { + if (i < 0 || i >= (int)adapter->gguf_kv.size()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + auto it = adapter->gguf_kv.begin(); + std::advance(it, i); + return snprintf(buf, buf_size, "%s", it->first.c_str()); +} + +int32_t llama_adapter_meta_val_str_by_index(const llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size) { + if (i < 0 || i >= (int)adapter->gguf_kv.size()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + auto it = adapter->gguf_kv.begin(); + std::advance(it, i); + return snprintf(buf, buf_size, "%s", it->second.c_str()); +} + void llama_adapter_lora_free(llama_adapter_lora * adapter) { delete adapter; } diff --git a/src/llama-adapter.h b/src/llama-adapter.h index 65824e972765b..9084e7cab08fd 100644 --- a/src/llama-adapter.h +++ b/src/llama-adapter.h @@ -67,6 +67,9 @@ struct llama_adapter_lora { float alpha; + // gguf metadata + std::unordered_map gguf_kv; + llama_adapter_lora() = default; ~llama_adapter_lora() = default; diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index 0ca0a4c22f814..d5c8477f4aa39 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -22,6 +22,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" }, { LLM_ARCH_NEO_BERT, "neo-bert" }, { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, + { LLM_ARCH_JINA_BERT_V3, "jina-bert-v3" }, { LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, @@ -68,6 +69,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, + { LLM_ARCH_NEMOTRON_H, "nemotron_h" }, { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_EXAONE4, "exaone4" }, { LLM_ARCH_RWKV6, "rwkv6" }, @@ -234,8 +236,10 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_TOKENIZER_FIM_REP_ID, "tokenizer.ggml.fim_rep_token_id" }, { LLM_KV_TOKENIZER_FIM_SEP_ID, "tokenizer.ggml.fim_sep_token_id" }, - { LLM_KV_ADAPTER_TYPE, "adapter.type" }, - { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, + { LLM_KV_ADAPTER_TYPE, "adapter.type" }, + { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, + { LLM_KV_ADAPTER_LORA_TASK_NAME, "adapter.lora.task_name" }, + { LLM_KV_ADAPTER_LORA_PROMPT_PREFIX, "adapter.lora.prompt_prefix" }, // deprecated { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, @@ -575,6 +579,20 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_CLS, "cls" }, }, }, + { + LLM_ARCH_JINA_BERT_V3, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + }, + }, { LLM_ARCH_BLOOM, { @@ -1533,6 +1551,31 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_NEMOTRON_H, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + // mamba(2) ssm layers + { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, + { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, + { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, + { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, + { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, + // attention layers + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + // dense FFN + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_EXAONE, { @@ -2338,6 +2381,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) { case LLM_ARCH_PLAMO2: case LLM_ARCH_GRANITE_HYBRID: case LLM_ARCH_LFM2: + case LLM_ARCH_NEMOTRON_H: return true; default: return false; diff --git a/src/llama-arch.h b/src/llama-arch.h index 7008c2514c5d4..86c119692d8cc 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -26,6 +26,7 @@ enum llm_arch { LLM_ARCH_NOMIC_BERT_MOE, LLM_ARCH_NEO_BERT, LLM_ARCH_JINA_BERT_V2, + LLM_ARCH_JINA_BERT_V3, LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, @@ -72,6 +73,7 @@ enum llm_arch { LLM_ARCH_T5ENCODER, LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, + LLM_ARCH_NEMOTRON_H, LLM_ARCH_EXAONE, LLM_ARCH_EXAONE4, LLM_ARCH_RWKV6, @@ -230,6 +232,8 @@ enum llm_kv { LLM_KV_ADAPTER_TYPE, LLM_KV_ADAPTER_LORA_ALPHA, + LLM_KV_ADAPTER_LORA_TASK_NAME, + LLM_KV_ADAPTER_LORA_PROMPT_PREFIX, LLM_KV_POSNET_EMBEDDING_LENGTH, LLM_KV_POSNET_BLOCK_COUNT, diff --git a/src/llama-context.cpp b/src/llama-context.cpp index 18cf25079d283..2de6fcf0cb209 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -41,7 +41,6 @@ llama_context::llama_context( cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.embeddings = params.embeddings; cparams.offload_kqv = params.offload_kqv; - cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; cparams.pooling_type = params.pooling_type; cparams.warmup = false; @@ -86,6 +85,8 @@ llama_context::llama_context( cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL; } + cparams.flash_attn = params.flash_attn_type != LLAMA_FLASH_ATTN_TYPE_DISABLED; + // with causal attention, the batch size is limited by the context size cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; @@ -102,16 +103,6 @@ llama_context::llama_context( cparams.op_offload = params.op_offload; cparams.kv_unified = params.kv_unified; - { - const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS"); - supports_set_rows = LLAMA_SET_ROWS ? (atoi(LLAMA_SET_ROWS) != 0) : supports_set_rows; - - if (!supports_set_rows && !cparams.kv_unified) { - LLAMA_LOG_WARN("%s: non-unified KV cache requires ggml_set_rows() - forcing unified KV cache\n", __func__); - cparams.kv_unified = true; - } - } - { const char * LLAMA_GRAPH_REUSE_DISABLE = getenv("LLAMA_GRAPH_REUSE_DISABLE"); graph_reuse_disable = LLAMA_GRAPH_REUSE_DISABLE ? (atoi(LLAMA_GRAPH_REUSE_DISABLE) != 0) : graph_reuse_disable; @@ -129,7 +120,7 @@ llama_context::llama_context( LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn); - LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); + LLAMA_LOG_INFO("%s: flash_attn = %s\n", __func__, llama_flash_attn_type_name(params.flash_attn_type)); LLAMA_LOG_INFO("%s: kv_unified = %s\n", __func__, cparams.kv_unified ? "true" : "false"); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); @@ -279,28 +270,72 @@ llama_context::llama_context( } } - // reserve worst-case graph - if (!hparams.vocab_only && memory) { + if (!hparams.vocab_only) { + llama_memory_context_ptr mctx; + if (memory) { + LLAMA_LOG_DEBUG("%s: reserving full memory module\n", __func__); + mctx = memory->init_full(); + if (!mctx) { + throw std::runtime_error("failed to initialize memory module"); + } + } + + cross.v_embd.clear(); + const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max; const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs); + // resolve automatic Flash Attention use + if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO) { + auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true); + if (!gf) { + throw std::runtime_error("failed to split graph for Flash Attention check"); + } + + const size_t prefix_len = strlen(LLAMA_TENSOR_NAME_FATTN) + 1; + bool fa_device_mismatch = false; + for (int i = 0; i < ggml_graph_n_nodes(gf); i++) { + ggml_tensor * n = ggml_graph_node(gf, i); + if (n->op != GGML_OP_FLASH_ATTN_EXT) { + continue; + } + ggml_backend_dev_t device_fa = ggml_backend_get_device( + ggml_backend_sched_get_tensor_backend(sched.get(), n)); + + // TODO: instead of the tensor names, use a map to keep track of which (FA) tensors belong to which layer + GGML_ASSERT(strncmp(n->name, LLAMA_TENSOR_NAME_FATTN "-", prefix_len) == 0); + const int il = std::stoi(n->name + prefix_len); + ggml_backend_dev_t device_kv = model.dev_layer(il); + if (device_fa != device_kv) { + LLAMA_LOG_WARN("%s: layer %d is assigned to device %s but the Flash Attention tensor " + "is assigned to device %s (usually due to missing support)\n", + __func__, il, ggml_backend_dev_name(device_kv), ggml_backend_dev_name(device_fa)); + // FIXME: fa_device_mismatch logic is wrong for --no-kv-offload, but this is broken anyways + fa_device_mismatch = true; + break; + } + } + if (fa_device_mismatch) { + cparams.flash_attn = false; + LLAMA_LOG_WARN("%s: Flash Attention was auto, set to disabled\n", __func__); + if (ggml_is_quantized(params.type_v)) { + throw std::runtime_error("quantized V cache was requested, but this requires Flash Attention"); + } + } else { + cparams.flash_attn = true; + LLAMA_LOG_INFO("%s: Flash Attention was auto, set to enabled\n", __func__); + } + } + + // reserve worst-case graph int n_splits_pp = -1; int n_nodes_pp = -1; int n_splits_tg = -1; int n_nodes_tg = -1; - // simulate full KV cache - - const auto mctx = memory->init_full(); - if (!mctx) { - throw std::runtime_error("failed to initialize KV cache"); - } - - cross.v_embd.clear(); - // reserve pp (prompt processing) graph first so that buffers are only allocated once { auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get()); @@ -888,12 +923,6 @@ int llama_context::encode(const llama_batch & batch_inp) { } } - if (!supports_set_rows) { - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(sched.get()); - } - // TODO: hacky solution if (model.arch == LLM_ARCH_T5 && t_embd) { //cross.t_embd = t_embd; @@ -1056,7 +1085,7 @@ int llama_context::decode(const llama_batch & batch_inp) { const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mctx.get(), status); if (!res) { - // the last ubatch failed or was aborted -> remove all positions of that ubatch from the KV cache + // the last ubatch failed or was aborted -> remove all positions of that ubatch from the memory module llama_pos pos_min[LLAMA_MAX_SEQ]; for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { pos_min[s] = std::numeric_limits::max(); @@ -1073,7 +1102,7 @@ int llama_context::decode(const llama_batch & batch_inp) { continue; } - LLAMA_LOG_WARN("%s: removing KV cache entries for seq_id = %d, pos = [%d, +inf)\n", __func__, s, pos_min[s]); + LLAMA_LOG_WARN("%s: removing memory module entries for seq_id = %d, pos = [%d, +inf)\n", __func__, s, pos_min[s]); memory->seq_rm(s, pos_min[s], -1); } @@ -1224,12 +1253,6 @@ int llama_context::decode(const llama_batch & batch_inp) { // wait for the computation to finish (automatically done when obtaining the model output) //synchronize(); - if (!supports_set_rows) { - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(sched.get()); - } - return 0; } @@ -1343,7 +1366,7 @@ llm_graph_result * llama_context::get_gf_res_reserve() const { return static_cast(gf_res_reserve.get()); } -ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx) { +ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only) { LLAMA_LOG_DEBUG("%s: reserving a graph for ubatch with n_tokens = %4u, n_seqs = %2u, n_outputs = %4u\n", __func__, n_tokens, n_seqs, n_outputs); if (n_tokens % n_seqs != 0) { @@ -1378,7 +1401,9 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u this->n_outputs = save_n_outputs; // initialize scheduler with the specified graph - if (!ggml_backend_sched_reserve(sched.get(), gf)) { + if (split_only) { + ggml_backend_sched_split_graph(sched.get(), gf); + } else if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); return nullptr; } @@ -1857,7 +1882,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) { } if (memory != nullptr) { - LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__); + LLAMA_LOG_DEBUG("%s: - writing memory module\n", __func__); memory->state_write(io); } @@ -1943,7 +1968,7 @@ size_t llama_context::state_read_data(llama_io_read_i & io) { } if (memory) { - LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__); + LLAMA_LOG_DEBUG("%s: - reading memory module\n", __func__); memory->state_read(io); } @@ -2228,6 +2253,7 @@ llama_context_params llama_context_default_params() { /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED, + /*.flash_attn_type =*/ LLAMA_FLASH_ATTN_TYPE_AUTO, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, /*.yarn_ext_factor =*/ -1.0f, @@ -2244,7 +2270,6 @@ llama_context_params llama_context_default_params() { /*.abort_callback_data =*/ nullptr, /*.embeddings =*/ false, /*.offload_kqv =*/ true, - /*.flash_attn =*/ false, /*.no_perf =*/ true, /*.op_offload =*/ true, /*.swa_full =*/ true, @@ -2272,12 +2297,30 @@ llama_context * llama_init_from_model( return nullptr; } - if (params.flash_attn && model->arch == LLM_ARCH_GROK) { + if (params.flash_attn_type != LLAMA_FLASH_ATTN_TYPE_DISABLED && model->arch == LLM_ARCH_GROK) { LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); - params.flash_attn = false; + params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED; + } + + if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO && ggml_is_quantized(params.type_k)) { + const uint32_t blck_size = ggml_blck_size(params.type_k); + if (model->hparams.n_embd_head_k % blck_size != 0) { + LLAMA_LOG_ERROR("%s: K cache type %s with block size %u does not divide n_embd_head_k=%u\n", + __func__, ggml_type_name(params.type_k), blck_size, model->hparams.n_embd_head_k); + return nullptr; + } + } + + if (params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_AUTO && ggml_is_quantized(params.type_v)) { + const uint32_t blck_size = ggml_blck_size(params.type_v); + if (model->hparams.n_embd_head_v % blck_size != 0) { + LLAMA_LOG_ERROR("%s: V cache type %s with block size %u does not divide n_embd_head_k=%u\n", + __func__, ggml_type_name(params.type_v), blck_size, model->hparams.n_embd_head_v); + return nullptr; + } } - if (ggml_is_quantized(params.type_v) && !params.flash_attn) { + if (ggml_is_quantized(params.type_v) && params.flash_attn_type == LLAMA_FLASH_ATTN_TYPE_DISABLED) { LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__); return nullptr; } diff --git a/src/llama-context.h b/src/llama-context.h index 3dd9205446483..f23aa8ee1368d 100644 --- a/src/llama-context.h +++ b/src/llama-context.h @@ -196,7 +196,7 @@ struct llama_context { ggml_status graph_compute(ggml_cgraph * gf, bool batched); // reserve a graph with a dummy ubatch of the specified size - ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx); + ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false); private: llm_graph_params graph_params( @@ -283,10 +283,6 @@ struct llama_context { bool has_evaluated_once = false; - // env: LLAMA_SET_ROWS (temporary) - // ref: https://github.com/ggml-org/llama.cpp/pull/14285 - bool supports_set_rows = true; - // env: LLAMA_GRAPH_REUSE_DISABLE bool graph_reuse_disable = false; diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 6419d739bd8a2..49ea5da7cb422 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -314,8 +314,6 @@ bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) { res &= self_kq_mask->ne[0] == mctx->get_n_kv(); res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); - res &= mctx->get_supports_set_rows(); // TODO: tmp - return res; } @@ -350,8 +348,6 @@ bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) { res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv(); res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); - res &= mctx->get_base()->get_supports_set_rows(); // TODO: tmp - return res; } @@ -1225,7 +1221,8 @@ ggml_tensor * llm_graph_context::build_attn_mha( ggml_tensor * kq_mask, ggml_tensor * sinks, ggml_tensor * v_mla, - float kq_scale) const { + float kq_scale, + int il) const { const bool v_trans = v->nb[1] > v->nb[2]; // split the batch into streams if needed @@ -1260,6 +1257,7 @@ ggml_tensor * llm_graph_context::build_attn_mha( cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias, hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f); + cb(cur, LLAMA_TENSOR_NAME_FATTN, il); ggml_flash_attn_ext_add_sinks(cur, sinks); ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32); @@ -1275,6 +1273,7 @@ ggml_tensor * llm_graph_context::build_attn_mha( // The permutations are noops and only change how the tensor data is interpreted. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_mul_mat(ctx0, v_mla, cur); + cb(cur, "fattn_mla", il); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs. #endif @@ -1283,6 +1282,7 @@ ggml_tensor * llm_graph_context::build_attn_mha( cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]); } else { ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); // note: this op tends to require high floating point range // while for some models F16 is enough, for others it is not, so we default to F32 here @@ -1296,32 +1296,42 @@ ggml_tensor * llm_graph_context::build_attn_mha( // before the softmax below kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f)); + cb(kq, "kq_tanh", il); kq = ggml_scale(ctx0, kq, 30); + cb(kq, "kq_scaled", il); } if (hparams.attn_soft_cap) { kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping); + cb(kq, "kq_scaled_1", il); kq = ggml_tanh (ctx0, kq); + cb(kq, "kq_tanh", il); kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping); + cb(kq, "kq_scaled_2", il); } if (kq_b) { kq = ggml_add(ctx0, kq, kq_b); + cb(kq, "kq_plus_kq_b", il); } kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); ggml_soft_max_add_sinks(kq, sinks); + cb(kq, "kq_soft_max", il); if (!v_trans) { // note: avoid this branch v = ggml_cont(ctx0, ggml_transpose(ctx0, v)); + cb(v, "v_cont", il); } ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); + cb(kqv, "kqv", il); // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA if (v_mla) { kqv = ggml_mul_mat(ctx0, v_mla, kqv); + cb(kqv, "kqv_mla", il); } cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3); @@ -1376,13 +1386,13 @@ ggml_tensor * llm_graph_context::build_attn( // [TAG_NO_CACHE_PAD] // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams - assert(!ubatch.equal_seqs()); + assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq)); ggml_tensor * q = q_cur; ggml_tensor * k = k_cur; ggml_tensor * v = v_cur; - ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); cb(cur, "kqv_out", il); if (wo) { @@ -1471,7 +1481,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = mctx_cur->get_k(ctx0, il); ggml_tensor * v = mctx_cur->get_v(ctx0, il); - ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); cb(cur, "kqv_out", il); if (wo) { @@ -1538,7 +1548,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = mctx_cur->get_k(ctx0, il); ggml_tensor * v = mctx_cur->get_v(ctx0, il); - ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); cb(cur, "kqv_out", il); if (wo) { @@ -1593,7 +1603,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = k_cur; ggml_tensor * v = v_cur; - ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); cb(cur, "kqv_out", il); if (wo) { diff --git a/src/llama-graph.h b/src/llama-graph.h index e11d91d5293f0..3c85333fde514 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -687,7 +687,8 @@ struct llm_graph_context { ggml_tensor * kq_mask, ggml_tensor * sinks, // [n_head_q] ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v] - float kq_scale) const; + float kq_scale, + int il) const; llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const; diff --git a/src/llama-impl.h b/src/llama-impl.h index 02b1d07f8400d..c5163e9225a5e 100644 --- a/src/llama-impl.h +++ b/src/llama-impl.h @@ -59,3 +59,5 @@ std::string llama_format_tensor_shape(const std::vector & ne); std::string llama_format_tensor_shape(const struct ggml_tensor * t); std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i); + +#define LLAMA_TENSOR_NAME_FATTN "__fattn__" diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp index d7ab56ccd9aac..f1c6918738684 100644 --- a/src/llama-kv-cache.cpp +++ b/src/llama-kv-cache.cpp @@ -197,18 +197,6 @@ llama_kv_cache::llama_kv_cache( const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG"); debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0; - - const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS"); - supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) != 0 : supports_set_rows; - - if (!supports_set_rows) { - // ref: https://github.com/ggml-org/llama.cpp/pull/14363 - GGML_ASSERT(unified && "cannot use non-unified KV cache without ggml_set_rows() support"); - } - - if (!supports_set_rows) { - LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__); - } } void llama_kv_cache::clear(bool data) { @@ -551,11 +539,8 @@ llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector(res.s0, seq_to_stream[seq_id]); - res.s1 = std::max(res.s1, seq_to_stream[seq_id]); + res.s0 = std::min(res.s0, seq_to_stream[seq_id]); + res.s1 = std::max(res.s1, seq_to_stream[seq_id]); res.strm[s] = seq_to_stream[seq_id]; res.idxs[s].reserve(n_tokens); @@ -964,11 +949,11 @@ bool llama_kv_cache::get_has_shift() const { return result; } -uint32_t llama_kv_cache::get_n_kv() const { +uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const { uint32_t result = 0; - for (uint32_t s = 0; s < n_stream; ++s) { - const auto & cells = v_cells[s]; + for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { + const auto & cells = v_cells[sinfo.strm[s]]; result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result); } @@ -976,10 +961,6 @@ uint32_t llama_kv_cache::get_n_kv() const { return result; } -bool llama_kv_cache::get_supports_set_rows() const { - return supports_set_rows; -} - ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const { const int32_t ikv = map_layer_ids.at(il); @@ -1017,52 +998,42 @@ ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_k // note: v->nb[1] <= v->nb[2] return ggml_view_4d(ctx, v, hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns, - ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] - ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2] - ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3] + ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] + ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2] + ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3] ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0); } // note: v->nb[1] > v->nb[2] return ggml_view_4d(ctx, v, n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns, - ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1] - ggml_row_size(v->type, kv_size), // v->nb[2] - ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3] + ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1] + ggml_row_size(v->type, kv_size), // v->nb[2] + ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3] ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0); } ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const { + GGML_UNUSED(sinfo); + const int32_t ikv = map_layer_ids.at(il); auto * k = layers[ikv].k; - const int64_t n_embd_k_gqa = k->ne[0]; const int64_t n_tokens = k_cur->ne[2]; k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens); - if (k_idxs && supports_set_rows) { - if (k->ne[2] > 1) { - k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]); - } - - return ggml_set_rows(ctx, k, k_cur, k_idxs); + if (k->ne[2] > 1) { + k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]); } - // TODO: fallback to old ggml_cpy() method for backwards compatibility - // will be removed when ggml_set_rows() is adopted by all backends - - GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS"); - - ggml_tensor * k_view = ggml_view_1d(ctx, k, - n_tokens*n_embd_k_gqa, - ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head()); - - return ggml_cpy(ctx, k_cur, k_view); + return ggml_set_rows(ctx, k, k_cur, k_idxs); } ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const { + GGML_UNUSED(sinfo); + const int32_t ikv = map_layer_ids.at(il); auto * v = layers[ikv].v; @@ -1072,48 +1043,25 @@ ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggm v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens); - if (v_idxs && supports_set_rows) { - if (!v_trans) { - if (v->ne[2] > 1) { - v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]); - } - - return ggml_set_rows(ctx, v, v_cur, v_idxs); - } - - // [TAG_V_CACHE_VARIABLE] - if (n_embd_v_gqa < v->ne[0]) { - v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_v_gqa, 0, 0, 0); + if (!v_trans) { + if (v->ne[2] > 1) { + v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]); } - // the row becomes a single element - ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]); - - v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]); - - return ggml_set_rows(ctx, v_view, v_cur, v_idxs); + return ggml_set_rows(ctx, v, v_cur, v_idxs); } - // TODO: fallback to old ggml_cpy() method for backwards compatibility - // will be removed when ggml_set_rows() is adopted by all backends - - GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS"); + // [TAG_V_CACHE_VARIABLE] + if (n_embd_v_gqa < v->ne[0]) { + v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_v_gqa, 0, 0, 0); + } - ggml_tensor * v_view = nullptr; + // the row becomes a single element + ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]); - if (!v_trans) { - v_view = ggml_view_1d(ctx, v, - n_tokens*n_embd_v_gqa, - ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head()); - } else { - v_cur = ggml_transpose(ctx, v_cur); + v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]); - v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa, - (v->ne[1] )*ggml_element_size(v), - (sinfo.head())*ggml_element_size(v)); - } - - return ggml_cpy(ctx, v_cur, v_view); + return ggml_set_rows(ctx, v_view, v_cur, v_idxs); } ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { @@ -1143,10 +1091,6 @@ ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama } void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { - if (!supports_set_rows) { - return; - } - const uint32_t n_tokens = ubatch->n_tokens; GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream()); @@ -1163,10 +1107,6 @@ void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ub } void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { - if (!supports_set_rows) { - return; - } - const uint32_t n_tokens = ubatch->n_tokens; GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream()); @@ -1985,8 +1925,7 @@ bool llama_kv_cache_context::apply() { } kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]); - - n_kv = kv->get_n_kv(); + n_kv = kv->get_n_kv(sinfos[i_cur]); return true; } @@ -2005,10 +1944,6 @@ uint32_t llama_kv_cache_context::get_n_kv() const { return n_kv; } -bool llama_kv_cache_context::get_supports_set_rows() const { - return kv->get_supports_set_rows(); -} - ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const { return kv->get_k(ctx, il, n_kv, sinfos[i_cur]); } diff --git a/src/llama-kv-cache.h b/src/llama-kv-cache.h index 76a5cb1e28e7e..07d29bb8187e2 100644 --- a/src/llama-kv-cache.h +++ b/src/llama-kv-cache.h @@ -38,8 +38,8 @@ class llama_kv_cache : public llama_memory_i { using idx_vec_t = std::vector; // number of streams: ns = s1 - s0 + 1 - llama_seq_id s0; - llama_seq_id s1; + uint32_t s0; + uint32_t s1; std::vector strm; // [ns] std::vector idxs; // [ns] @@ -139,10 +139,7 @@ class llama_kv_cache : public llama_memory_i { // graph_build API // - uint32_t get_n_kv() const; - - // TODO: temporary - bool get_supports_set_rows() const; + uint32_t get_n_kv(const slot_info & sinfo) const; // get views of the current state of the cache ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const; @@ -215,10 +212,6 @@ class llama_kv_cache : public llama_memory_i { // env: LLAMA_KV_CACHE_DEBUG int debug = 0; - // env: LLAMA_SET_ROWS (temporary) - // ref: https://github.com/ggml-org/llama.cpp/pull/14285 - bool supports_set_rows = true; - const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; std::vector ctxs; @@ -318,9 +311,6 @@ class llama_kv_cache_context : public llama_memory_context_i { uint32_t get_n_kv() const; - // TODO: temporary - bool get_supports_set_rows() const; - // get views of the current state of the cache ggml_tensor * get_k(ggml_context * ctx, int32_t il) const; ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp index f71c40f8e3f33..8182a9adf53a6 100644 --- a/src/llama-model-loader.cpp +++ b/src/llama-model-loader.cpp @@ -788,6 +788,7 @@ const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::stri } struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list & ne, int flags) { + LLAMA_LOG_DEBUG("%s: loading tensor %s\n", __func__, name.c_str()); const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); if (cur == NULL) { diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 7d3429617bef9..5e54ce25f1298 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -47,6 +47,7 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_410M: return "410M"; case LLM_TYPE_450M: return "450M"; case LLM_TYPE_475M: return "475M"; + case LLM_TYPE_558M: return "558M"; case LLM_TYPE_700M: return "700M"; case LLM_TYPE_770M: return "770M"; case LLM_TYPE_780M: return "780M"; @@ -772,6 +773,18 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_JINA_BERT_V3: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); + + switch (hparams.n_layer) { + case 24: + type = LLM_TYPE_558M; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: { @@ -1097,7 +1110,7 @@ void llama_model::load_hparams(llama_model_loader & ml) { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { - case 18: type = LLM_TYPE_537M; break; + case 18: type = LLM_TYPE_270M; break; case 26: type = LLM_TYPE_1B; break; case 34: type = LLM_TYPE_4B; break; case 48: type = LLM_TYPE_12B; break; @@ -1557,6 +1570,27 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_NEMOTRON_H: + { + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); + ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); + ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); + ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); + ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group); + + // A layer is recurrent IFF the n_head_kv value is set to 0 and + // the n_ff value is set to 0 + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0); + } + + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 56: type = LLM_TYPE_9B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_EXAONE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -2631,6 +2665,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: + case LLM_ARCH_JINA_BERT_V3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED); @@ -2666,24 +2701,22 @@ bool llama_model::load_tensors(llama_model_loader & ml) { } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) { - layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); } else { - layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); - layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); - - if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) { - layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); - layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - } else { + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); + + if (arch == LLM_ARCH_NOMIC_BERT) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); } } @@ -4676,6 +4709,75 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; + case LLM_ARCH_NEMOTRON_H: + { + // mamba2 Mixer SSM params + // NOTE: int64_t for tensor dimensions + const int64_t d_conv = hparams.ssm_d_conv; + const int64_t d_inner = hparams.ssm_d_inner; + const int64_t d_state = hparams.ssm_d_state; + const int64_t n_ssm_head = hparams.ssm_dt_rank; + const int64_t n_group = hparams.ssm_n_group; + const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head; + + // embeddings + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + { + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed, duplicated to allow offloading + if (output == NULL) { + output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); + } + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + // all blocks use the attn norm + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + if (hparams.is_recurrent(i)) { + // ssm layers + layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0); + + layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0); + layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED); + + layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0); + + // no "weight" suffix for these + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0); + layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0); + + layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0); + + // out_proj + layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); + } else if (hparams.n_ff(i) == 0) { + // attention layers (with optional bias) + const int64_t n_head_i = hparams.n_head(i); + const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i); + const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); + } else { + // mlp layers + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED); + } + } + } break; case LLM_ARCH_EXAONE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -5850,7 +5952,8 @@ void llama_model::print_info() const { arch == LLM_ARCH_JAMBA || arch == LLM_ARCH_FALCON_H1 || arch == LLM_ARCH_PLAMO2 || - arch == LLM_ARCH_GRANITE_HYBRID) { + arch == LLM_ARCH_GRANITE_HYBRID || + arch == LLM_ARCH_NEMOTRON_H) { LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); @@ -7461,7 +7564,7 @@ struct llm_build_bert : public llm_graph_context { } // RoPE - if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) { + if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) { Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, @@ -7520,7 +7623,7 @@ struct llm_build_bert : public llm_graph_context { 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); - } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) { + } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) { cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, @@ -14117,6 +14220,138 @@ struct llm_build_nemotron : public llm_graph_context { } }; +struct llm_build_nemotron_h : public llm_graph_context_mamba { + llm_build_nemotron_h( + const llama_model & model, + const llm_graph_params & params) : + llm_graph_context_mamba(params) { + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + auto * inp = build_inp_mem_hybrid(); + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = build_norm(inpL, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + + if (hparams.is_recurrent(il)) { + // ssm layer // + cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); + } else if (hparams.n_ff(il) == 0) { + // attention layer // + cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il); + } else { + cur = build_ffn_layer(cur, model, il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // add residual + cur = ggml_add(ctx0, cur, inpSA); + cb(cur, "block_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } + + ggml_tensor * build_attention_layer( + ggml_tensor * cur, + llm_graph_input_attn_kv * inp_attn, + const llama_model & model, + const int64_t n_embd_head, + const int il) { + + // compute Q and K and (optionally) RoPE them + ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; + cur = build_attn(inp_attn, + model.layers[il].wo, model.layers[il].bo, + Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); + cb(cur, "attn_out", il); + return cur; + } + + ggml_tensor * build_ffn_layer( + ggml_tensor * cur, + const llama_model & model, + const int il) { + + cur = build_ffn(cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + NULL, NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_RELU_SQR, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + return cur; + } +}; + struct llm_build_exaone : public llm_graph_context { llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; @@ -18241,6 +18476,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, // switch statement case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: + case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: case LLM_ARCH_NEO_BERT: @@ -18264,6 +18500,23 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, cparams.n_seq_max, nullptr); } else if (llm_arch_is_hybrid(arch)) { + + // The main difference between hybrid architectures is the + // layer filters, so pick the right one here + llama_memory_hybrid::layer_filter_cb filter_attn = nullptr; + llama_memory_hybrid::layer_filter_cb filter_recr = nullptr; + if (arch == LLM_ARCH_FALCON_H1) { + filter_attn = [&](int32_t) { return true; }; + filter_recr = [&](int32_t) { return true; }; + } else if (arch == LLM_ARCH_NEMOTRON_H) { + filter_attn = [&](int32_t il) { + return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0; + }; + filter_recr = [&](int32_t il) { + return hparams.is_recurrent(il) && hparams.n_ff(il) == 0; + }; + } + const auto padding = llama_kv_cache::get_padding(cparams); cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding); @@ -18283,8 +18536,8 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, /* n_seq_max */ cparams.n_seq_max, /* offload */ cparams.offload_kqv, /* unified */ cparams.kv_unified, - /* filter_attn */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr, - /* filter_recr */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr); + /* filter_attn */ std::move(filter_attn), + /* filter_recr */ std::move(filter_recr)); } else { const auto padding = llama_kv_cache::get_padding(cparams); @@ -18395,6 +18648,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { } break; case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: + case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: { @@ -18611,6 +18865,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_NEMOTRON_H: + { + llm = std::make_unique(*this, params); + } break; case LLM_ARCH_EXAONE: { llm = std::make_unique(*this, params); @@ -18736,7 +18994,7 @@ llama_model_params llama_model_default_params() { llama_model_params result = { /*.devices =*/ nullptr, /*.tensor_buft_overrides =*/ nullptr, - /*.n_gpu_layers =*/ 0, + /*.n_gpu_layers =*/ 999, /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, @@ -18750,11 +19008,6 @@ llama_model_params llama_model_default_params() { /*.use_extra_bufts =*/ true, }; -#ifdef GGML_USE_METAL - // note: we usually have plenty of VRAM, so by default offload all layers to the GPU - result.n_gpu_layers = 999; -#endif - return result; } @@ -18846,6 +19099,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: case LLM_ARCH_WAVTOKENIZER_DEC: + case LLM_ARCH_NEMOTRON_H: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values @@ -18885,6 +19139,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_GROK: case LLM_ARCH_DBRX: case LLM_ARCH_BERT: + case LLM_ARCH_JINA_BERT_V3: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: case LLM_ARCH_STABLELM: diff --git a/src/llama-model.h b/src/llama-model.h index af4460cc01eb0..10b1767f27228 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -39,7 +39,7 @@ enum llm_type { LLM_TYPE_410M, LLM_TYPE_450M, LLM_TYPE_475M, - LLM_TYPE_537M, + LLM_TYPE_558M, LLM_TYPE_700M, LLM_TYPE_770M, LLM_TYPE_780M, diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index bfbf5fa230112..2186f827bf543 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -128,6 +128,89 @@ struct ring_buffer { std::vector data; }; +// writes result in res, does not mutate cur +static void llama_token_data_array_partial_sort(const llama_token_data_array & cur, int npartial, std::vector & res) { + static const auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + + constexpr int nbuckets = 128; + constexpr float bucket_low = -10.0f; + constexpr float bucket_high = 10.0f; + constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); + constexpr float bucket_inter = -bucket_low * bucket_scale; + + std::vector bucket_idx; + std::vector histo(nbuckets, 0); + + std::vector bucket_ptrs; + + bucket_idx.reserve(cur.size); + + for (int i = 0; i < (int)cur.size; ++i) { + const float val = cur.data[i].logit; + int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); + ib = std::max(0, std::min(nbuckets - 1, ib)); + bucket_idx.push_back(ib); + ++histo[ib]; + } + int nhave = 0; + int ib = nbuckets - 1; + for ( ; ib >= 0; --ib) { + nhave += histo[ib]; + if (nhave >= npartial) { + break; + } + } + res.resize(nhave); + auto * ptr = res.data(); + bucket_ptrs.reserve(nbuckets - ib); + for (int j = nbuckets - 1; j >= ib; --j) { + bucket_ptrs.push_back(ptr); + ptr += histo[j]; + } + for (int i = 0; i < (int)cur.size; ++i) { + int j = bucket_idx[i]; + if (j >= ib) { + *bucket_ptrs[nbuckets - 1 - j]++ = cur.data[i]; + } + } + + ptr = res.data(); + int ndone = 0; + for (int j = nbuckets - 1; j > ib; --j) { + std::sort(ptr, ptr + histo[j], comp); + ptr += histo[j]; + ndone += histo[j]; + } + std::partial_sort(ptr, ptr + npartial - ndone, ptr + histo[ib], comp); +} + +// reduces the size of cur_p to npartial, keeping only the top npartial elements +static void llama_token_data_array_partial_sort_inplace(llama_token_data_array * cur_p, int npartial) { + static const auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + + if (npartial <= 128) { + std::partial_sort(cur_p->data, cur_p->data + npartial, cur_p->data + cur_p->size, comp); + + cur_p->size = npartial; + cur_p->sorted = true; + + return; + } + + std::vector tmp; + + llama_token_data_array_partial_sort(*cur_p, npartial, tmp); + + std::copy(tmp.data(), tmp.data() + npartial, cur_p->data); + + cur_p->size = npartial; + cur_p->sorted = true; +} + static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { // iterator for the probabilities #ifdef __GNUC__ @@ -200,18 +283,21 @@ static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) } } -static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { +static void llama_sampler_softmax_impl(llama_token_data_array * cur_p, bool do_sort) { GGML_ASSERT(cur_p->size > 0); - // Sort the logits in descending order - if (!cur_p->sorted) { - std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - cur_p->sorted = true; + // Sort the logits in descending order if requested + if (do_sort && !cur_p->sorted) { + llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size); } float max_l = cur_p->data[0].logit; + if (!cur_p->sorted) { + for (size_t i = 1; i < cur_p->size; ++i) { + max_l = std::max(max_l, cur_p->data[i].logit); + } + } + float cum_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { @@ -226,7 +312,6 @@ static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { } static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { - // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast // if (k >= (int32_t)cur_p->size) { // return; // } @@ -239,64 +324,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) // Sort scores in descending order if (!cur_p->sorted) { - auto comp = [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }; - if (k <= 128) { - std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); - } else { - constexpr int nbuckets = 128; - constexpr float bucket_low = -10.0f; - constexpr float bucket_high = 10.0f; - constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); - constexpr float bucket_inter = -bucket_low * bucket_scale; - - std::vector bucket_idx(cur_p->size); - std::vector histo(nbuckets, 0); - - for (int i = 0; i < (int)cur_p->size; ++i) { - const float val = cur_p->data[i].logit; - int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); - ib = std::max(0, std::min(nbuckets - 1, ib)); - bucket_idx[i] = ib; - ++histo[ib]; - } - int nhave = 0; - int ib = nbuckets - 1; - for ( ; ib >= 0; --ib) { - nhave += histo[ib]; - if (nhave >= k) { - break; - } - } - std::vector tmp_tokens(nhave); - auto * ptr = tmp_tokens.data(); - std::vector bucket_ptrs; - bucket_ptrs.reserve(nbuckets - ib); - for (int j = nbuckets - 1; j >= ib; --j) { - bucket_ptrs.push_back(ptr); - ptr += histo[j]; - } - for (int i = 0; i < (int)cur_p->size; ++i) { - int j = bucket_idx[i]; - if (j >= ib) { - *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i]; - } - } - - ptr = tmp_tokens.data(); - int ndone = 0; - for (int j = nbuckets - 1; j > ib; --j) { - std::sort(ptr, ptr + histo[j], comp); - ptr += histo[j]; - ndone += histo[j]; - } - std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); - - std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); - - } - cur_p->sorted = true; + llama_token_data_array_partial_sort_inplace(cur_p, k); } cur_p->size = k; @@ -576,9 +604,73 @@ static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl* static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dist *) smpl->ctx; - llama_sampler_softmax_impl(cur_p); + // edge cases + if (cur_p->size == 0) { + cur_p->selected = -1; + return; + } + + cur_p->selected = 0; + + if (cur_p->size == 1) { + cur_p->data[0].p = 1.0f; + return; + } + + // max logit for numerical stability + float max_l = cur_p->data[0].logit; + if (!cur_p->sorted) { + for (size_t i = 1; i < cur_p->size; ++i) { + max_l = std::max(max_l, cur_p->data[i].logit); + } + } + + // apply softmax to obtain the probabilities + double sum_cum = 0.0f; + for (size_t i = 0; i < cur_p->size; ++i) { + float p = expf(cur_p->data[i].logit - max_l); + cur_p->data[i].p = p; + sum_cum += p; + } + +#if 1 + // sample from the obtained probabilities and normalize the probs in a single pass + // this is ~3x faster on Mac with full gpt-oss vocab than the version below + // + std::uniform_real_distribution dist(0.0f, 1.0f); + const double rnd = dist(ctx->rng); + + double sum_run = 0.0f; + const double sum_tgt = sum_cum*rnd; + + bool found = false; + for (size_t i = 0; i < cur_p->size; ++i) { + if (!found) { + // accumulate probs until we reach the target sum + sum_run += cur_p->data[i].p; + if (sum_run >= sum_tgt) { + cur_p->selected = i; + found = true; + } + } + + // normalize probs + cur_p->data[i].p /= sum_cum; + } + + // fallback to the last token (don't think this can happen) + assert(found); + if (!found) { + cur_p->selected = cur_p->size - 1; + } +#else + // for clarity, this is the same as above but does one pass for normalization and one extra pass for sampling + for (size_t i = 0; i < cur_p->size; ++i) { + cur_p->data[i].p /= sum_cum; + } cur_p->selected = llama_sample_dist(cur_p, ctx->rng); +#endif } static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { @@ -626,32 +718,6 @@ struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { ); } -// softmax - -static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) { - return "softmax"; -} - -static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { - llama_sampler_softmax_impl(cur_p); -} - -static struct llama_sampler_i llama_sampler_softmax_i = { - /* .name = */ llama_sampler_softmax_name, - /* .accept = */ nullptr, - /* .apply = */ llama_sampler_softmax_apply, - /* .reset = */ nullptr, - /* .clone = */ nullptr, - /* .free = */ nullptr, -}; - -struct llama_sampler * llama_sampler_init_softmax() { - return llama_sampler_init( - /* .iface = */ &llama_sampler_softmax_i, - /* .ctx = */ nullptr - ); -} - // top-k struct llama_sampler_top_k { @@ -663,7 +729,7 @@ static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl } static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_top_k *) smpl->ctx; + auto * ctx = (llama_sampler_top_k *) smpl->ctx; llama_sampler_top_k_impl(cur_p, ctx->k); } @@ -699,6 +765,8 @@ struct llama_sampler * llama_sampler_init_top_k(int32_t k) { struct llama_sampler_top_p { const float p; const size_t min_keep; + + std::vector buf_sort; }; static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) { @@ -706,20 +774,35 @@ static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl } static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_top_p *) smpl->ctx; + auto * ctx = (llama_sampler_top_p *) smpl->ctx; if (ctx->p >= 1.0f) { return; } - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, false); + + size_t k = cur_p->size; + auto * pdata = cur_p->data; + + auto & buf_sort = ctx->buf_sort; + + // if not sorted, try adaptive top-k sorting + if (!cur_p->sorted && cur_p->size > 1024) { + k = std::min(256, cur_p->size); + llama_token_data_array_partial_sort(*cur_p, k, buf_sort); + pdata = buf_sort.data(); + } else if (!cur_p->sorted) { + // small candidates -> sort inplace + llama_token_data_array_partial_sort_inplace(cur_p, k); + } // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = cur_p->size; for (size_t i = 0; i < cur_p->size; ++i) { - cum_sum += cur_p->data[i].p; + cum_sum += pdata[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set @@ -727,9 +810,21 @@ static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_d last_idx = i + 1; break; } + + // we exceeded the current top-k heuristic -> increase k and continue + if (!cur_p->sorted && i == k - 1) { + k = cur_p->size; + llama_token_data_array_partial_sort(*cur_p, k, buf_sort); + pdata = buf_sort.data(); + } } // Resize the output vector to keep only the top-p tokens + if (!cur_p->sorted) { + std::copy(buf_sort.data(), buf_sort.data() + last_idx, cur_p->data); + cur_p->sorted = true; + } + cur_p->size = last_idx; } @@ -757,6 +852,7 @@ struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { /* .ctx = */ new llama_sampler_top_p { /* .p = */ p, /* .min_keep = */ min_keep, + /* .buf_sort = */ {}, } ); } @@ -773,7 +869,7 @@ static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl } static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_min_p *) smpl->ctx; + auto * ctx = (llama_sampler_min_p *) smpl->ctx; if (ctx->p <= 0.0f || !cur_p->size) { return; @@ -799,7 +895,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d // if we have enough values the operation was a success if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) { - memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); + std::copy(filtered_tokens.begin(), filtered_tokens.end(), cur_p->data); cur_p->size = filtered_tokens.size(); min_p_applied = true; } @@ -809,10 +905,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d if (!min_p_applied) { // Sort the logits in descending order if (!cur_p->sorted) { - std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - cur_p->sorted = true; + llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size); } const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max @@ -869,7 +962,7 @@ static const char * llama_sampler_typical_name(const struct llama_sampler * /*sm } static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_typical *) smpl->ctx; + auto * ctx = (llama_sampler_typical *) smpl->ctx; // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr @@ -878,7 +971,7 @@ static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token } // Compute the softmax of logits and calculate entropy - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { @@ -1012,7 +1105,7 @@ static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*s } static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; + auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; if (ctx->delta > 0) { const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); const float max_temp = ctx->temp + ctx->delta; @@ -1027,7 +1120,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke // Calculate maximum possible entropy float max_entropy = -logf(1.0f / cur_p->size); - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); // Calculate entropy of the softmax probabilities float entropy = 0.0f; @@ -1121,7 +1214,7 @@ struct llama_sampler_xtc { const uint32_t seed; uint32_t seed_cur; - std::mt19937 rng; + std::mt19937 rng; }; static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) { @@ -1139,17 +1232,20 @@ static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data std::uniform_real_distribution distribution(0.0f, 1.0f); float chance = distribution(ctx->rng); - if (chance > ctx->probability) return; + if (chance > ctx->probability) { + return; + } - // in case it's not sorted/recalculated yet - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); int pos_last = 0; for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].p >= ctx->threshold) { pos_last = i; - } else break; + } else { + break; + } } if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { @@ -1221,7 +1317,7 @@ struct llama_sampler_mirostat { float mu; - std::mt19937 rng; + std::mt19937 rng; }; static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) { @@ -1231,7 +1327,7 @@ static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*s static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; @@ -1250,7 +1346,8 @@ static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_toke float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); - llama_sampler_softmax_impl(cur_p); + + llama_sampler_softmax_impl(cur_p, true); const int idx = llama_sample_dist(cur_p, ctx->rng); @@ -1336,7 +1433,7 @@ static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); // Truncate the words with surprise values greater than mu cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { @@ -1348,7 +1445,7 @@ static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_t } // Normalize the probabilities of the remaining words - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); const int idx = llama_sample_dist(cur_p, ctx->rng); @@ -1540,7 +1637,7 @@ static struct llama_sampler * llama_sampler_init_grammar_impl( trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0"); } trigger_pattern += ")[\\s\\S]*"; - auto trigger_pattern_c = trigger_pattern.c_str(); + const auto * trigger_pattern_c = trigger_pattern.c_str(); trigger_patterns = &trigger_pattern_c; num_trigger_patterns = 1; } @@ -1748,7 +1845,7 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * } static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; + auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; if (ctx->n <= 0.0f || cur_p->size <= 1) { return; @@ -1780,13 +1877,14 @@ static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_t } float std = valid_count > 0 ? sqrt(acc/valid_count) : 0; - //apply mask + // apply mask for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].logit < max - (ctx->n * std)) { cur_p->data[i].logit = -INFINITY; } } - llama_sampler_softmax_impl(cur_p); + + llama_sampler_softmax_impl(cur_p, true); } static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) { @@ -1991,7 +2089,9 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat { const int last = last_n_repeat - 1; - int rt = 0, lt = 0; + + int rt = 0; + int lt = 0; for (int k = 1; k < last_n_repeat; ++k) { if (k > rt) { @@ -2135,8 +2235,8 @@ static struct llama_sampler_i llama_sampler_dry_i = { /* .free = */ llama_sampler_dry_free, }; -struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { - int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); +struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t n_ctx_train, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { + int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? n_ctx_train : std::max(dry_penalty_last_n, 0); std::unordered_multimap> processed_breakers; const int MAX_CHAR_LEN = 40; const int MAX_SEQ_LEN = 20; @@ -2169,7 +2269,7 @@ struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, return llama_sampler_init( /* .iface = */ &llama_sampler_dry_i, /* .ctx = */ new llama_sampler_dry { - /* .total_context_size = */ context_size, + /* .total_context_size = */ n_ctx_train, /* .dry_multiplier = */ dry_multiplier, /* .dry_base = */ dry_base, /* .dry_allowed_length = */ dry_allowed_length, @@ -2308,7 +2408,7 @@ static const char * llama_sampler_infill_name(const struct llama_sampler * /*smp static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_infill *) smpl->ctx; - llama_sampler_softmax_impl(cur_p); + llama_sampler_softmax_impl(cur_p, true); #if defined(GGML_DEBUG_SAMPLER_INFILL) #define LOG_DBG_CUR LLAMA_LOG_DEBUG diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index de5d1681dff85..ca02b63a58407 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -2470,7 +2470,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { // set attributes by model/tokenizer/architecture name if (false || _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"}) - || _contains_any(general_arch, {"nomic-bert-moe"}) + || _contains_any(general_arch, {"nomic-bert-moe", "jina-bert-v3"}) ) { if (token_to_id.count("") == 0) { LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__); diff --git a/src/llama.cpp b/src/llama.cpp index 34906cdb62844..f0d4f5f891cc7 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -25,6 +25,18 @@ // interface implementation // +const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type) { + switch (flash_attn_type) { + case LLAMA_FLASH_ATTN_TYPE_AUTO: + return "auto"; + case LLAMA_FLASH_ATTN_TYPE_DISABLED: + return "disabled"; + case LLAMA_FLASH_ATTN_TYPE_ENABLED: + return "enabled"; + } + GGML_ABORT("fatal error"); +} + struct llama_sampler_chain_params llama_sampler_chain_default_params() { struct llama_sampler_chain_params result = { /*.no_perf =*/ true, diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 74886b4549056..3a58621094d17 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2209,6 +2209,26 @@ struct test_count_equal : public test_case { double max_nmse_err() override { return 0.0; } + + void initialize_tensors(ggml_context * ctx) override { + std::random_device rd; + std::default_random_engine rng(rd()); + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + if (t->type == GGML_TYPE_F32) { + // initialize with unique values to avoid ties + for (int64_t r = 0; r < ggml_nrows(t); r++) { + std::vector data(t->ne[0]); + for (int i = 0; i < t->ne[0]; i++) { + data[i] = i; + } + std::shuffle(data.begin(), data.end(), rng); + ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); + } + } else { + init_tensor_uniform(t); + } + } + } }; // GGML_OP_REPEAT @@ -2769,6 +2789,49 @@ struct test_norm : public test_case { } }; +// GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD +struct test_norm_mul_add : public test_case { + const ggml_type type; + const std::array ne; + float eps; + const bool broadcast; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "NORM_MUL_ADD"; + } + + bool run_whole_graph() override { return true; } + + std::string vars() override { + return VARS_TO_STR4(type, ne, eps, broadcast); + } + + test_norm_mul_add(ggml_type type = GGML_TYPE_F32, + std::array ne = {128, 2, 1, 1}, + float eps = 1e-5f, + bool broadcast = false) + : type(type), ne(ne), eps(eps), broadcast(broadcast) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + std::array broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2}; + + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data()); + ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); ggml_set_param(w); ggml_set_param(b); + ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b"); + + // Use a, w and b early to avoid OP_NONE in graph + a = ggml_add(ctx, ggml_add(ctx, a, w), b); + + ggml_tensor * n = ggml_norm(ctx, a, eps); + ggml_tensor * m = ggml_mul(ctx, n, w); + ggml_tensor * out = ggml_add(ctx, m, b); + ggml_set_name(out, "out"); + return out; + } +}; // GGML_OP_RMS_NORM struct test_rms_norm : public test_case { const ggml_type type; @@ -4455,6 +4518,44 @@ struct test_group_norm : public test_case { } }; +// GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD +struct test_group_norm_mul_add : public test_case { + const ggml_type type; + const std::array ne; + int num_groups; + float eps; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "GROUP_NORM_MUL_ADD"; + } + + bool run_whole_graph() override { return true; } + + std::string vars() override { + return VARS_TO_STR4(type, ne, num_groups, eps); + } + + test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32, + std::array ne = {128, 1, 1, 1}, + int num_groups = 4, + float eps = 1e-5f) + : type(type), ne(ne), num_groups(num_groups), eps(eps) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); ggml_set_param(w); ggml_set_param(b); + ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b"); + ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps); + ggml_tensor * m = ggml_mul(ctx, n, w); + ggml_tensor * out = ggml_add(ctx, m, b); + ggml_set_name(out, "out"); + return out; + } +}; + // GGML_OP_L2_NORM struct test_l2_norm : public test_case { const ggml_type type; @@ -5845,6 +5946,8 @@ static std::vector> make_test_cases_eval() { for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) { test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true)); + test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false)); + test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true)); } for (uint32_t n : {1, 511, 1025, 8192, 33*512}) { for (bool multi_add : {false, true}) { @@ -5997,6 +6100,8 @@ static std::vector> make_test_cases_eval() { // test large experts*tokens for (bool b : {false, true}) { test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16)); + test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64)); + test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64)); } test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1)); @@ -6231,6 +6336,8 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 })); test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1})); test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1})); + test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1})); + test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1})); test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_pad_reflect_1d()); @@ -6378,6 +6485,24 @@ static std::vector> make_test_cases_perf() { } } + // qwen3-30b-a3b + for (int bs : {1, 4, 8, 512}) { + for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) { + for (ggml_type type_b : {GGML_TYPE_F32}) { + test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1)); + } + } + } + + // gpt-oss-20b + for (int bs : {1, 4, 8, 512}) { + for (ggml_type type_a : {GGML_TYPE_MXFP4}) { + for (ggml_type type_b : {GGML_TYPE_F32}) { + test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1)); + } + } + } + for (int K : {3, 5}) { for (int IC : {256, 2560}) { for (int IW_IH : {32, 64, 256}) { diff --git a/tests/test-chat.cpp b/tests/test-chat.cpp index a6daa93a82b32..8120b45c4bfae 100644 --- a/tests/test-chat.cpp +++ b/tests/test-chat.cpp @@ -1621,6 +1621,140 @@ static void test_template_output_parsers() { /* .reasoning_format = */ COMMON_REASONING_FORMAT_AUTO, })); } + { + // Seed-OSS format tests + auto tmpls = read_templates("models/templates/ByteDance-Seed-OSS.jinja"); + std::vector end_tokens{ "" }; + + assert_equals(COMMON_CHAT_FORMAT_SEED_OSS, common_chat_templates_apply(tmpls.get(), inputs_no_tools).format); + assert_equals(COMMON_CHAT_FORMAT_SEED_OSS, common_chat_templates_apply(tmpls.get(), inputs_tools).format); + + test_templates(tmpls.get(), end_tokens, message_assist, tools, "Hello, world!\nWhat's up?", /* expect_grammar_triggered= */ false); + + // Test simple reasoning content + assert_msg_equals( + simple_assist_msg("Hello, world!", "I'm thinking about the answer"), + common_chat_parse( + "I'm thinking about the answerHello, world!", + /* is_partial= */ false, + { + /* .format = */ COMMON_CHAT_FORMAT_SEED_OSS, + /* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK, + })); + + // Test budget reflection tags + common_chat_msg msg_budget_reflect; + msg_budget_reflect.role = "assistant"; + msg_budget_reflect.content = "Token usage: 45/1000\nI should continue thinking to find the best solution.I need to calculate this step by step."; + msg_budget_reflect.reasoning_content = "Token usage: 45/1000\nI should continue thinking to find the best solution."; + assert_msg_equals( + msg_budget_reflect, + common_chat_parse( + "Token usage: 45/1000\nI should continue thinking to find the best solution." + "Token usage: 45/1000\nI should continue thinking to find the best solution." + "I need to calculate this step by step.", + /* is_partial= */ false, + { + /* .format = */ COMMON_CHAT_FORMAT_SEED_OSS, + /* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK, + })); + + // Test tool calls with Seed-OSS format + common_chat_msg msg_tool_call; + msg_tool_call.role = "assistant"; + msg_tool_call.tool_calls.push_back({"calculate_sum", "{\"numbers\": [1, 2, 3]}", ""}); + assert_msg_equals( + msg_tool_call, + common_chat_parse( + "\n" + "\n" + "[1, 2, 3]\n" + "\n" + "", + /* is_partial= */ false, + {COMMON_CHAT_FORMAT_SEED_OSS})); + + // Test reasoning + tool call combination + common_chat_msg msg_reasoning_tool; + msg_reasoning_tool.role = "assistant"; + msg_reasoning_tool.content = ""; + msg_reasoning_tool.reasoning_content = "I need to calculate the sum of these numbers"; + msg_reasoning_tool.tool_calls.push_back({"calculate_sum", "{\"numbers\": [1, 2, 3]}", ""}); + assert_msg_equals( + msg_reasoning_tool, + common_chat_parse( + "I need to calculate the sum of these numbers" + "\n" + "\n" + "[1, 2, 3]\n" + "\n" + "", + /* is_partial= */ false, + { + /* .format = */ COMMON_CHAT_FORMAT_SEED_OSS, + /* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK, + })); + + // Test deltas: the number of tool calls in partial parses should never decrease + std::string tool_msg = "\n" + "\n" + "[1, 2, 3]\n" + ""; + std::size_t previousToolCalls = 0; + for (std::size_t i = std::string("").length(); i < tool_msg.length() - 1; i++) { + auto partial = tool_msg.substr(0, i); + auto partial_res = common_chat_parse(partial, true, { COMMON_CHAT_FORMAT_SEED_OSS, COMMON_REASONING_FORMAT_DEEPSEEK }); + if (partial_res.tool_calls.size() < previousToolCalls) { + throw std::runtime_error("Tool call size decreased on partial: " + partial + " from " + std::to_string(previousToolCalls) + " to " + std::to_string(partial_res.tool_calls.size())); + } + previousToolCalls = partial_res.tool_calls.size(); + } + + // Test multiple parameters in tool call + common_chat_msg msg_multi_param; + msg_multi_param.role = "assistant"; + msg_multi_param.tool_calls.push_back({"process_data", "{\"input\": \"test\", \"format\": \"json\"}", ""}); + assert_msg_equals( + msg_multi_param, + common_chat_parse( + "\n" + "\n" + "test\n" + "json\n" + "\n" + "", + /* is_partial= */ false, + {COMMON_CHAT_FORMAT_SEED_OSS})); + + // Test partial parsing for incomplete tool call - don't actually add the call until parsing parameters is done + assert_msg_equals( + simple_assist_msg("", ""), + common_chat_parse( + "\n" + "\n" + "[1,\n", + /* is_partial= */ true, + {COMMON_CHAT_FORMAT_SEED_OSS})); + + // Test incomplete reasoning tag + assert_msg_equals( + simple_assist_msg("", "I was thinking"), + common_chat_parse( + "I was thinking", + /* is_partial= */ true, + { + /* .format = */ COMMON_CHAT_FORMAT_SEED_OSS, + /* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK, + })); + + // Test content without reasoning + assert_msg_equals( + simple_assist_msg("This is a simple response without reasoning."), + common_chat_parse( + "This is a simple response without reasoning.", + /* is_partial= */ false, + {COMMON_CHAT_FORMAT_SEED_OSS})); + } } static void test_msg_diffs_compute() { diff --git a/tests/test-opt.cpp b/tests/test-opt.cpp index 18d3fcf2cb948..8dcb4a7dbfd62 100644 --- a/tests/test-opt.cpp +++ b/tests/test-opt.cpp @@ -3,7 +3,6 @@ #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" -#include "ggml-cpu.h" #include "ggml-opt.h" #include @@ -899,6 +898,7 @@ static std::pair test_backend( int main(void) { ggml_log_set(nullptr, nullptr); + ggml_backend_load_all(); const size_t dev_count = ggml_backend_dev_count(); printf("Testing %zu devices\n\n", dev_count); size_t n_ok = 0; @@ -911,11 +911,12 @@ int main(void) { ggml_backend_t backend = ggml_backend_dev_init(devs[i], NULL); GGML_ASSERT(backend != NULL); -#ifndef _MSC_VER - if (ggml_backend_is_cpu(backend)) { - ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); + + auto * reg = ggml_backend_dev_backend_reg(devs[i]); + auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); + if (ggml_backend_set_n_threads_fn) { + ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency() / 2); } -#endif backends.push_back(backend); } diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index 6300f25caebe3..7cd96c5cd351c 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -197,10 +197,10 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler sampler_tester tester(n_vocab); llama_token min_token_id = 0; - const llama_token max_token_id = n_vocab-1; + const llama_token max_token_id = n_vocab - 1; for (auto s : samplers_sequence) { - switch (s){ + switch (s) { case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break; case 'y': GGML_ABORT("typical test not implemented"); case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break; @@ -243,10 +243,10 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler } GGML_ASSERT(size == expected_size); - GGML_ASSERT(cur_p.data[0].id == max_token_id); - GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id); + GGML_ASSERT(!cur_p.sorted || cur_p.data[0].id == max_token_id); + GGML_ASSERT(!cur_p.sorted || cur_p.data[expected_size-1].id == min_token_id); } else if (s == 'm') { - int expected_size = ceilf((1.0f-min_p) * n_vocab); + int expected_size = ceilf((1.0f - min_p) * n_vocab); expected_size = std::max(expected_size, 1); expected_size = std::min(expected_size, size); @@ -256,14 +256,14 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1)); GGML_ASSERT(size == expected_size); - GGML_ASSERT(cur_p.data[0].id == max_token_id); - GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id); + GGML_ASSERT(!cur_p.sorted || cur_p.data[0].id == max_token_id); + GGML_ASSERT(!cur_p.sorted || cur_p.data[expected_size-1].id == min_token_id); } else { GGML_ABORT("fatal error"); } } - printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n", + printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%5d top_p=%f min_p=%f\n", samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p); } @@ -308,28 +308,28 @@ static void test_perf() { int main(void) { ggml_time_init(); - test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f); - test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f); + test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f, 0.2f, 0.3f, 0.4f}, 1.0f); + test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.0f, 0.0f, 0.0f, 1.0f}, 0.0f); - test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f); - test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f); + test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f, 0.2f, 0.3f, 0.4f}, 1.0f, 0.0f, 1.0f); + test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.0f, 0.0f, 0.0f, 1.0f}, 0.0f, 0.0f, 1.0f); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4); - test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0); + test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f, 0.2f, 0.3f, 0.4f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f); - test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f); - - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f); - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f); - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f); - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f); - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f); - test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f); + test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f, 0.2f, 0.3f, 0.4f}, 1.0f); + + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f/1.0f, 0.2f/1.0f, 0.3f/1.0f, 0.4f/1.0f}, 0.00f); + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f/1.0f, 0.2f/1.0f, 0.3f/1.0f, 0.4f/1.0f}, 0.24f); + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.2f/0.9f, 0.3f/0.9f, 0.4f/0.9f}, 0.26f); + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.2f/0.9f, 0.3f/0.9f, 0.4f/0.9f}, 0.49f); + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.3f/0.7f, 0.4f/0.7f}, 0.51f); + test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.3f/0.7f, 0.4f/0.7f}, 0.74f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.05f); @@ -345,23 +345,23 @@ int main(void) { test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0, 0.25f, 0.25f, 0.25f, 0.25f}, 50.0f, 0.0f, 0.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0, 0, 0, 0.5f, 0.5f}, 50.0f, 0.0f, 0.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0, 0, 0, 0.5f, 0.5f}, 50.0f, 0.0f, 0.0f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f); - test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.000011f, 0.249997f, 0.249997f, 0.249997f, 0.249997f}, 1.0f, 5.0f, 5.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.000023f, 0.000023f, 0.000023f, 0.499966f, 0.499966f}, 1.0f, 5.0f, 5.0f); + test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.000000f, 0.000023f, 0.000023f, 0.499977f, 0.499977f}, 1.0f, 5.0f, 5.0f); test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1}, {0.25f, 0.25f, 0.25f, 0.25f}, 1.0f, 1.1f, 2, 4, {}); - test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1, 2, 0, 1}, {0.296923f, 0.296923f, 0.296923f, 0.109232f}, 1.0f, 1.1f, 2, 5, {}); + test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1, 2, 0, 1}, {0.296923f, 0.296923f, 0.109232f, 0.296923f}, 1.0f, 1.1f, 2, 5, {}); test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 2, 6, {{3}}); - test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.241818f, 0.241818f, 0.032727f}, 2.0f, 1.1f, 2, 5, {}); + test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.032727f, 0.241818f, 0.241818f}, 2.0f, 1.1f, 2, 5, {}); test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {}); test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f, 0.0f, 0.0f}, 1.00f); - test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.00f); // top_n_sigma == 0 now represents a no-op rather than greedy decoding as of PR#13345 + test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.1f, 0.2f, 0.3f, 0.4f}, 0.00f); // top_n_sigma == 0 now represents a no-op rather than greedy decoding as of PR#13345 test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 3.00f); test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f); @@ -372,7 +372,7 @@ int main(void) { test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12); test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f); - test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f); + test_sampler_queue(10000, "p", 10000, 0.0003f, 1.0f); test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f); test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f); test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f); diff --git a/tools/batched-bench/batched-bench.cpp b/tools/batched-bench/batched-bench.cpp index c6c601add32ac..46dd12caae544 100644 --- a/tools/batched-bench/batched-bench.cpp +++ b/tools/batched-bench/batched-bench.cpp @@ -111,7 +111,7 @@ int main(int argc, char ** argv) { if (!params.batched_bench_output_jsonl) { LOG("\n"); - LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG("\n"); LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); @@ -124,7 +124,7 @@ int main(int argc, char ** argv) { const int tg = n_tg[i_tg]; const int pl = n_pl[i_pl]; - const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); + const int n_ctx_req = is_pp_shared ? (params.kv_unified ? pp : pl*pp) + pl*tg : pl*(pp + tg); if (n_ctx_req > n_kv_max) { continue; @@ -147,13 +147,24 @@ int main(int argc, char ** argv) { return 1; } + const auto t_pp_end = ggml_time_us(); + if (is_pp_shared) { for (int32_t i = 1; i < pl; ++i) { llama_memory_seq_cp(mem, 0, i, -1, -1); } - } - const auto t_pp_end = ggml_time_us(); + if (!params.kv_unified) { + // run one dummy token to apply the memory copy + common_batch_clear(batch); + common_batch_add(batch, get_token_rand(), pp + 0, { 0 }, true); + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG_ERR("%s: llama_decode() failed\n", __func__); + return 1; + } + llama_memory_seq_rm(mem, 0, pp, -1); + } + } const auto t_tg_start = ggml_time_us(); @@ -180,13 +191,13 @@ int main(int argc, char ** argv) { const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; const float speed_tg = pl*tg / t_tg; - const float speed = n_kv / t; + const float speed = ((is_pp_shared ? pp : pl*pp) + pl*tg) / t; if(params.batched_bench_output_jsonl) { LOG( "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n", - n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, + n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed ); } else { diff --git a/tools/llama-bench/llama-bench.cpp b/tools/llama-bench/llama-bench.cpp index 9378706a12a7c..9b9803dedabef 100644 --- a/tools/llama-bench/llama-bench.cpp +++ b/tools/llama-bench/llama-bench.cpp @@ -987,16 +987,16 @@ struct cmd_params_instance { llama_context_params to_llama_cparams() const { llama_context_params cparams = llama_context_default_params(); - cparams.n_ctx = n_prompt + n_gen + n_depth; - cparams.n_batch = n_batch; - cparams.n_ubatch = n_ubatch; - cparams.type_k = type_k; - cparams.type_v = type_v; - cparams.offload_kqv = !no_kv_offload; - cparams.flash_attn = flash_attn; - cparams.embeddings = embeddings; - cparams.op_offload = !no_op_offload; - cparams.swa_full = false; + cparams.n_ctx = n_prompt + n_gen + n_depth; + cparams.n_batch = n_batch; + cparams.n_ubatch = n_ubatch; + cparams.type_k = type_k; + cparams.type_v = type_v; + cparams.offload_kqv = !no_kv_offload; + cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED; + cparams.embeddings = embeddings; + cparams.op_offload = !no_op_offload; + cparams.swa_full = false; return cparams; } diff --git a/tools/main/main.cpp b/tools/main/main.cpp index dc776f59e90a4..865ea4a2f724c 100644 --- a/tools/main/main.cpp +++ b/tools/main/main.cpp @@ -587,12 +587,12 @@ int main(int argc, char ** argv) { if (n_past + (int) embd.size() >= n_ctx) { if (!params.ctx_shift){ - LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__); + LOG_WRN("\n\n%s: context full and context shift is disabled => stopping\n", __func__); break; } if (params.n_predict == -2) { - LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); + LOG_WRN("\n\n%s: context full and n_predict == %d => stopping\n", __func__, params.n_predict); break; } diff --git a/tools/mtmd/CMakeLists.txt b/tools/mtmd/CMakeLists.txt index 4baa15b9609fc..097948856038e 100644 --- a/tools/mtmd/CMakeLists.txt +++ b/tools/mtmd/CMakeLists.txt @@ -55,6 +55,8 @@ add_executable(llama-qwen2vl-cli deprecation-warning.cpp) set(TARGET llama-mtmd-cli) add_executable (${TARGET} mtmd-cli.cpp) set_target_properties (${TARGET} PROPERTIES OUTPUT_NAME llama-mtmd-cli) -install (TARGETS ${TARGET} RUNTIME) +if(NOT CMAKE_SYSTEM_NAME STREQUAL "iOS") + install(TARGETS ${TARGET} RUNTIME) +endif() target_link_libraries (${TARGET} PRIVATE common mtmd Threads::Threads) target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/tools/mtmd/clip-impl.h b/tools/mtmd/clip-impl.h index 706ed2e3b5e21..664b0c9ac6e36 100644 --- a/tools/mtmd/clip-impl.h +++ b/tools/mtmd/clip-impl.h @@ -135,6 +135,7 @@ enum projector_type { PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx PROJECTOR_TYPE_VOXTRAL, PROJECTOR_TYPE_LFM2, + PROJECTOR_TYPE_KIMIVL, PROJECTOR_TYPE_UNKNOWN, }; @@ -156,6 +157,7 @@ static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_QWEN25O, "qwen2.5o"}, { PROJECTOR_TYPE_VOXTRAL, "voxtral"}, { PROJECTOR_TYPE_LFM2, "lfm2"}, + { PROJECTOR_TYPE_KIMIVL, "kimivl"}, }; static projector_type clip_projector_type_from_string(const std::string & str) { diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp index b3628db64f886..e7c516d2de8d1 100644 --- a/tools/mtmd/clip.cpp +++ b/tools/mtmd/clip.cpp @@ -526,57 +526,16 @@ struct clip_graph { cur); } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) { + // pixel_shuffle // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578 - const int scale_factor = model.hparams.proj_scale_factor; - const int n_embd = cur->ne[0]; - const int seq = cur->ne[1]; - const int bsz = 1; // batch size, always 1 for now since we don't support batching - const int height = std::sqrt(seq); - const int width = std::sqrt(seq); - GGML_ASSERT(scale_factor != 0); - cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz); - cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); - cur = ggml_cont_4d(ctx0, cur, - n_embd * scale_factor * scale_factor, - height / scale_factor, - width / scale_factor, - bsz); - cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); - cur = ggml_cont_3d(ctx0, cur, - n_embd * scale_factor * scale_factor, - seq / (scale_factor * scale_factor), - bsz); - + cur = build_patch_merge_permute(cur, scale_factor); cur = ggml_mul_mat(ctx0, model.projection, cur); + } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) { // pixel unshuffle block const int scale_factor = model.hparams.proj_scale_factor; - GGML_ASSERT(scale_factor > 1); - - const int n_embd = cur->ne[0]; - int width = img.nx / patch_size; - int height = img.ny / patch_size; - - // pad width and height to factor - const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width; - const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height; - cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height); - if (pad_width || pad_height) { - cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0); - width += pad_width; - height += pad_height; - } - - // unshuffle h - cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height); - cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); - - // unshuffle w - cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor); - cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); - - cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]); + cur = build_patch_merge_permute(cur, scale_factor); // projection cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm @@ -1086,7 +1045,7 @@ struct clip_graph { n_patches_x / scale_factor, n_patches_y / scale_factor, bsz); - cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); + //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // flatten to 2D cur = ggml_cont_2d(ctx0, cur, n_embd * scale_factor * scale_factor, @@ -1113,6 +1072,67 @@ struct clip_graph { return gf; } + ggml_cgraph * build_kimivl() { + // 2D input positions + ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); + ggml_set_name(pos_h, "pos_h"); + ggml_set_input(pos_h); + + ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); + ggml_set_name(pos_w, "pos_w"); + ggml_set_input(pos_w); + + ggml_tensor * learned_pos_embd = resize_position_embeddings(); + + // build ViT with 2D position embeddings + auto add_pos = [&](ggml_tensor * cur, const clip_layer &) { + // first half is X axis and second half is Y axis + return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false); + }; + + ggml_tensor * inp = build_inp(); + ggml_tensor * cur = build_vit( + inp, n_patches, + NORM_TYPE_NORMAL, + hparams.ffn_op, + learned_pos_embd, + add_pos); + + cb(cur, "vit_out", -1); + + { + // patch_merger + const int scale_factor = model.hparams.proj_scale_factor; + cur = build_patch_merge_permute(cur, scale_factor); + + // projection norm + int proj_inp_dim = cur->ne[0]; + cur = ggml_view_2d(ctx0, cur, + n_embd, cur->ne[1] * scale_factor * scale_factor, + ggml_row_size(cur->type, n_embd), 0); + cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm + cur = ggml_mul(ctx0, cur, model.mm_input_norm_w); + cur = ggml_add(ctx0, cur, model.mm_input_norm_b); + cur = ggml_view_2d(ctx0, cur, + proj_inp_dim, cur->ne[1] / scale_factor / scale_factor, + ggml_row_size(cur->type, proj_inp_dim), 0); + cb(cur, "proj_inp_normed", -1); + + // projection mlp + cur = ggml_mul_mat(ctx0, model.mm_1_w, cur); + cur = ggml_add(ctx0, cur, model.mm_1_b); + cur = ggml_gelu(ctx0, cur); + cur = ggml_mul_mat(ctx0, model.mm_2_w, cur); + cur = ggml_add(ctx0, cur, model.mm_2_b); + cb(cur, "proj_out", -1); + } + + // build the graph + ggml_build_forward_expand(gf, cur); + + return gf; + } + // this graph is used by llava, granite and glm // due to having embedding_stack (used by granite), we cannot reuse build_vit ggml_cgraph * build_llava() { @@ -1611,18 +1631,20 @@ struct clip_graph { ggml_tensor * pos_embd = model.position_embeddings; const int height = img.ny / patch_size; const int width = img.nx / patch_size; + const uint32_t mode = GGML_SCALE_MODE_BILINEAR; + const int n_per_side = (int)std::sqrt(pos_embd->ne[1]); + + GGML_ASSERT(pos_embd); - if (!pos_embd || height * width == pos_embd->ne[1]) { + if (height == n_per_side && width == n_per_side) { return pos_embd; } - const int n_pos_embd = std::sqrt(pos_embd->ne[1]); - pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_pos_embd, n_pos_embd); // -> (n_embd, n_pos_embd, n_pos_embd) - pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_pos_embd, n_pos_embd, n_embd) - pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, 1); // -> (width, height, n_embd) - pos_embd = ggml_reshape_2d(ctx0, pos_embd, height * width, n_embd); // -> (height * width, n_embd) - pos_embd = ggml_transpose(ctx0, pos_embd); // -> (n_embd, height * width) - pos_embd = ggml_cont(ctx0, pos_embd); + pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side) + pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd) + pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd) + pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height) + pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height) return pos_embd; } @@ -2021,6 +2043,39 @@ struct clip_graph { return cur; } + // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL) + // support dynamic resolution + ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) { + GGML_ASSERT(scale_factor > 1); + + const int n_embd = cur->ne[0]; + int width = img.nx / patch_size; + int height = img.ny / patch_size; + + // pad width and height to factor + const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width; + const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height; + cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height); + if (pad_width || pad_height) { + cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0); + width += pad_width; + height += pad_height; + } + + // unshuffle h + cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height); + cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); + + // unshuffle w + cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor); + cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); + + cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]); + cb(cur, "pixel_shuffle", -1); + + return cur; + } + }; static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) { @@ -2063,6 +2118,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 { res = graph.build_whisper_enc(); } break; + case PROJECTOR_TYPE_KIMIVL: + { + res = graph.build_kimivl(); + } break; default: { res = graph.build_llava(); @@ -2202,6 +2261,8 @@ struct clip_model_loader { hparams.minicpmv_query_num = 64; } else if (hparams.minicpmv_version == 5) { hparams.minicpmv_query_num = 64; + } else if (hparams.minicpmv_version == 6) { + hparams.minicpmv_query_num = 64; } else { hparams.minicpmv_query_num = 96; } @@ -2311,6 +2372,12 @@ struct clip_model_loader { hparams.image_size = 1024; get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false); } break; + case PROJECTOR_TYPE_KIMIVL: + { + hparams.rope_theta = 10000.0f; + hparams.warmup_image_size = hparams.patch_size * 8; + get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false); + } break; case PROJECTOR_TYPE_GEMMA3: { // default value (used by all model sizes in gemma 3 family) @@ -2475,7 +2542,20 @@ struct clip_model_loader { // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check! - if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) { + bool is_ffn_swapped = ( + // only old models need this fix + model.proj_type == PROJECTOR_TYPE_MLP + || model.proj_type == PROJECTOR_TYPE_MLP_NORM + || model.proj_type == PROJECTOR_TYPE_LDP + || model.proj_type == PROJECTOR_TYPE_LDPV2 + || model.proj_type == PROJECTOR_TYPE_QWEN2VL + || model.proj_type == PROJECTOR_TYPE_QWEN25VL + || model.proj_type == PROJECTOR_TYPE_GLM_EDGE + || model.proj_type == PROJECTOR_TYPE_GEMMA3 + || model.proj_type == PROJECTOR_TYPE_IDEFICS3 + || model.proj_type == PROJECTOR_TYPE_MINICPMV + ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd; + if (is_ffn_swapped) { // swap up and down weights ggml_tensor * tmp = layer.ff_up_w; layer.ff_up_w = layer.ff_down_w; @@ -2484,6 +2564,9 @@ struct clip_model_loader { tmp = layer.ff_up_b; layer.ff_up_b = layer.ff_down_b; layer.ff_down_b = tmp; + if (il == 0) { + LOG_WRN("%s: ffn up/down are swapped\n", __func__); + } } } @@ -2602,6 +2685,7 @@ struct clip_model_loader { model.projection = get_tensor(TN_MM_PROJECTOR); } break; case PROJECTOR_TYPE_LFM2: + case PROJECTOR_TYPE_KIMIVL: { model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM); model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B); @@ -3505,7 +3589,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str res_imgs->grid_y = inst.grid_size.height; return true; - } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) { + } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2 + || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL + ) { GGML_ASSERT(params.proj_scale_factor); // smart resize @@ -3685,6 +3771,9 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im } else if (params.minicpmv_version == 5) { // MiniCPM-V 4.0 n_patches = 64; + } else if (params.minicpmv_version == 6) { + // MiniCPM-V 4.5 + n_patches = 64; } else { GGML_ABORT("Unknown minicpmv version"); } @@ -3703,12 +3792,21 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im case PROJECTOR_TYPE_IDEFICS3: case PROJECTOR_TYPE_INTERNVL: case PROJECTOR_TYPE_LLAMA4: - case PROJECTOR_TYPE_LFM2: { - // both W and H are divided by proj_scale_factor + // both X and Y are downscaled by the scale factor int scale_factor = ctx->model.hparams.proj_scale_factor; n_patches /= (scale_factor * scale_factor); } break; + case PROJECTOR_TYPE_LFM2: + case PROJECTOR_TYPE_KIMIVL: + { + // dynamic size + int scale_factor = ctx->model.hparams.proj_scale_factor; + int out_patch_size = params.patch_size * scale_factor; + int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size; + int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size; + n_patches = x_patch * y_patch; + } break; case PROJECTOR_TYPE_PIXTRAL: { // dynamic size @@ -4091,6 +4189,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_PIXTRAL: + case PROJECTOR_TYPE_KIMIVL: { // set the 2D positions int n_patches_per_col = image_size_width / patch_size; @@ -4245,6 +4344,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { case PROJECTOR_TYPE_QWEN2A: return ctx->model.mm_fc_w->ne[1]; case PROJECTOR_TYPE_LFM2: + case PROJECTOR_TYPE_KIMIVL: return ctx->model.mm_2_w->ne[1]; default: GGML_ABORT("Unknown projector type"); diff --git a/tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py b/tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py index 4dda60a21164b..f34d858d675bc 100644 --- a/tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py +++ b/tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py @@ -607,6 +607,9 @@ def bytes_to_unicode(): elif minicpmv_version == 5: emb_dim = 2560 block_count = 27 + elif minicpmv_version == 6: + emb_dim = 4096 + block_count = 27 default_vision_config = { "hidden_size": 1152, @@ -630,6 +633,10 @@ def bytes_to_unicode(): default_vision_config["model_type"] = "siglip_vision_model" vision_config = SiglipVisionConfig(**default_vision_config) model = SiglipVisionTransformer(vision_config) +elif minicpmv_version == 6: + default_vision_config["model_type"] = "siglip_vision_model" + vision_config = SiglipVisionConfig(**default_vision_config) + model = SiglipVisionTransformer(vision_config) processor = None # if model.attn_pool is not None: diff --git a/tools/mtmd/mtmd.cpp b/tools/mtmd/mtmd.cpp index a05373d5b3ca5..cd022c5e245c0 100644 --- a/tools/mtmd/mtmd.cpp +++ b/tools/mtmd/mtmd.cpp @@ -207,7 +207,7 @@ struct mtmd_context { tok_row_end_trail = false; // no trailing end-of-row token ov_img_first = true; - } else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5) { + } else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6) { // minicpmv 2.6 format: // (overview) (slice) (slice) \n ... slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6; diff --git a/tools/mtmd/tests.sh b/tools/mtmd/tests.sh index 6f8a5f86ac5b2..c64be03630a56 100755 --- a/tools/mtmd/tests.sh +++ b/tools/mtmd/tests.sh @@ -86,6 +86,7 @@ if [ "$RUN_BIG_TESTS" = true ]; then add_test_vision "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M" add_test_vision "ggml-org/Qwen2.5-Omni-7B-GGUF:Q4_K_M" # add_test_vision "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra + add_test_vision "ggml-org/Kimi-VL-A3B-Thinking-2506-GGUF:Q4_K_M" add_test_audio "ggml-org/ultravox-v0_5-llama-3_1-8b-GGUF:Q4_K_M" add_test_audio "ggml-org/Qwen2.5-Omni-7B-GGUF:Q4_K_M" diff --git a/tools/server/README.md b/tools/server/README.md index baf3730add67c..b0527f3cbea28 100644 --- a/tools/server/README.md +++ b/tools/server/README.md @@ -37,7 +37,7 @@ The project is under active development, and we are [looking for feedback and co | `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") | | `-Cr, --cpu-range lo-hi` | range of CPUs for affinity. Complements --cpu-mask | | `--cpu-strict <0\|1>` | use strict CPU placement (default: 0)
| -| `--prio N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)
| +| `--prio N` | set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: 0)
| | `--poll <0...100>` | use polling level to wait for work (0 - no polling, default: 50)
| | `-Cb, --cpu-mask-batch M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask) | | `-Crb, --cpu-range-batch lo-hi` | ranges of CPUs for affinity. Complements --cpu-mask-batch | @@ -49,6 +49,8 @@ The project is under active development, and we are [looking for feedback and co | `-b, --batch-size N` | logical maximum batch size (default: 2048)
(env: LLAMA_ARG_BATCH) | | `-ub, --ubatch-size N` | physical maximum batch size (default: 512)
(env: LLAMA_ARG_UBATCH) | | `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) | +| `--swa-full` | use full-size SWA cache (default: false)
[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
(env: LLAMA_ARG_SWA_FULL) | +| `--kv-unified, -kvu` | use single unified KV buffer for the KV cache of all sequences (default: false)
[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)
(env: LLAMA_ARG_KV_SPLIT) | | `-fa, --flash-attn` | enable Flash Attention (default: disabled)
(env: LLAMA_ARG_FLASH_ATTN) | | `--no-perf` | disable internal libllama performance timings (default: false)
(env: LLAMA_ARG_NO_PERF) | | `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) | @@ -62,8 +64,8 @@ The project is under active development, and we are [looking for feedback and co | `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
(env: LLAMA_ARG_YARN_ATTN_FACTOR) | | `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0)
(env: LLAMA_ARG_YARN_BETA_SLOW) | | `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)
(env: LLAMA_ARG_YARN_BETA_FAST) | -| `-dkvc, --dump-kv-cache` | verbose print of the KV cache | | `-nkvo, --no-kv-offload` | disable KV offload
(env: LLAMA_ARG_NO_KV_OFFLOAD) | +| `-nr, --no-repack` | disable weight repacking
(env: LLAMA_ARG_NO_REPACK) | | `-ctk, --cache-type-k TYPE` | KV cache data type for K
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_K) | | `-ctv, --cache-type-v TYPE` | KV cache data type for V
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_V) | | `-dt, --defrag-thold N` | KV cache defragmentation threshold (DEPRECATED)
(env: LLAMA_ARG_DEFRAG_THOLD) | @@ -74,12 +76,15 @@ The project is under active development, and we are [looking for feedback and co | `-dev, --device ` | comma-separated list of devices to use for offloading (none = don't offload)
use --list-devices to see a list of available devices
(env: LLAMA_ARG_DEVICE) | | `--list-devices` | print list of available devices and exit | | `--override-tensor, -ot =,...` | override tensor buffer type | +| `--cpu-moe, -cmoe` | keep all Mixture of Experts (MoE) weights in the CPU
(env: LLAMA_ARG_CPU_MOE) | +| `--n-cpu-moe, -ncmoe N` | keep the Mixture of Experts (MoE) weights of the first N layers in the CPU
(env: LLAMA_ARG_N_CPU_MOE) | | `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM
(env: LLAMA_ARG_N_GPU_LAYERS) | | `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:
- none: use one GPU only
- layer (default): split layers and KV across GPUs
- row: split rows across GPUs
(env: LLAMA_ARG_SPLIT_MODE) | | `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1
(env: LLAMA_ARG_TENSOR_SPLIT) | | `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0)
(env: LLAMA_ARG_MAIN_GPU) | | `--check-tensors` | check model tensor data for invalid values (default: false) | | `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false | +| `--no-op-offload` | disable offloading host tensor operations to device (default: false) | | `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) | | `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) | | `--control-vector FNAME` | add a control vector
note: this argument can be repeated to add multiple control vectors | @@ -97,9 +102,12 @@ The project is under active development, and we are [looking for feedback and co | `--log-file FNAME` | Log to file | | `--log-colors` | Enable colored logging
(env: LLAMA_LOG_COLORS) | | `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) | +| `--offline` | Offline mode: forces use of cache, prevents network access
(env: LLAMA_OFFLINE) | | `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored.
(env: LLAMA_LOG_VERBOSITY) | | `--log-prefix` | Enable prefix in log messages
(env: LLAMA_LOG_PREFIX) | | `--log-timestamps` | Enable timestamps in log messages
(env: LLAMA_LOG_TIMESTAMPS) | +| `-ctkd, --cache-type-k-draft TYPE` | KV cache data type for K for the draft model
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_K_DRAFT) | +| `-ctvd, --cache-type-v-draft TYPE` | KV cache data type for V for the draft model
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_V_DRAFT) | **Sampling params** @@ -114,6 +122,7 @@ The project is under active development, and we are [looking for feedback and co | `--top-k N` | top-k sampling (default: 40, 0 = disabled) | | `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) | | `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) | +| `--top-nsigma N` | top-n-sigma sampling (default: -1.0, -1.0 = disabled) | | `--xtc-probability N` | xtc probability (default: 0.0, 0.0 = disabled) | | `--xtc-threshold N` | xtc threshold (default: 0.1, 1.0 = disabled) | | `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) | @@ -142,7 +151,10 @@ The project is under active development, and we are [looking for feedback and co | Argument | Explanation | | -------- | ----------- | -| `--no-context-shift` | disables context shift on infinite text generation (default: disabled)
(env: LLAMA_ARG_NO_CONTEXT_SHIFT) | +| `--swa-checkpoints N` | max number of SWA checkpoints per slot to create (default: 3)
[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)
(env: LLAMA_ARG_SWA_CHECKPOINTS) | +| `--no-context-shift` | disables context shift on infinite text generation (default: enabled)
(env: LLAMA_ARG_NO_CONTEXT_SHIFT) | +| `--context-shift` | enables context shift on infinite text generation (default: disabled)
(env: LLAMA_ARG_CONTEXT_SHIFT) | +| `-r, --reverse-prompt PROMPT` | halt generation at PROMPT, return control in interactive mode
| | `-sp, --special` | special tokens output enabled (default: false) | | `--no-warmup` | skip warming up the model with an empty run | | `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) | @@ -153,10 +165,14 @@ The project is under active development, and we are [looking for feedback and co | `--mmproj-url URL` | URL to a multimodal projector file. see tools/mtmd/README.md
(env: LLAMA_ARG_MMPROJ_URL) | | `--no-mmproj` | explicitly disable multimodal projector, useful when using -hf
(env: LLAMA_ARG_NO_MMPROJ) | | `--no-mmproj-offload` | do not offload multimodal projector to GPU
(env: LLAMA_ARG_NO_MMPROJ_OFFLOAD) | +| `--override-tensor-draft, -otd =,...` | override tensor buffer type for draft model | +| `--cpu-moe-draft, -cmoed` | keep all Mixture of Experts (MoE) weights in the CPU for the draft model
(env: LLAMA_ARG_CPU_MOE_DRAFT) | +| `--n-cpu-moe-draft, -ncmoed N` | keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model
(env: LLAMA_ARG_N_CPU_MOE_DRAFT) | | `-a, --alias STRING` | set alias for model name (to be used by REST API)
(env: LLAMA_ARG_ALIAS) | | `--host HOST` | ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: 127.0.0.1)
(env: LLAMA_ARG_HOST) | | `--port PORT` | port to listen (default: 8080)
(env: LLAMA_ARG_PORT) | | `--path PATH` | path to serve static files from (default: )
(env: LLAMA_ARG_STATIC_PATH) | +| `--api-prefix PREFIX` | prefix path the server serves from, without the trailing slash (default: )
(env: LLAMA_ARG_API_PREFIX) | | `--no-webui` | Disable the Web UI (default: enabled)
(env: LLAMA_ARG_NO_WEBUI) | | `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
(env: LLAMA_ARG_EMBEDDINGS) | | `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)
(env: LLAMA_ARG_RERANKING) | @@ -164,23 +180,25 @@ The project is under active development, and we are [looking for feedback and co | `--api-key-file FNAME` | path to file containing API keys (default: none) | | `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key
(env: LLAMA_ARG_SSL_KEY_FILE) | | `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate
(env: LLAMA_ARG_SSL_CERT_FILE) | -| `--chat-template-kwargs STRING` | JSON object containing additional params for the json template parser. Example: `--chat_template_kwargs "{\"enable_thinking\":false}`"
(env: LLAMA_CHAT_TEMPLATE_KWARGS) | +| `--chat-template-kwargs STRING` | sets additional params for the json template parser
(env: LLAMA_CHAT_TEMPLATE_KWARGS) | | `-to, --timeout N` | server read/write timeout in seconds (default: 600)
(env: LLAMA_ARG_TIMEOUT) | | `--threads-http N` | number of threads used to process HTTP requests (default: -1)
(env: LLAMA_ARG_THREADS_HTTP) | | `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)
[(card)](https://ggml.ai/f0.png)
(env: LLAMA_ARG_CACHE_REUSE) | | `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)
(env: LLAMA_ARG_ENDPOINT_METRICS) | -| `--slots` | enable slots monitoring endpoint (default: disabled)
(env: LLAMA_ARG_ENDPOINT_SLOTS) | | `--props` | enable changing global properties via POST /props (default: disabled)
(env: LLAMA_ARG_ENDPOINT_PROPS) | +| `--slots` | enable slots monitoring endpoint (default: enabled)
(env: LLAMA_ARG_ENDPOINT_SLOTS) | | `--no-slots` | disables slots monitoring endpoint
(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) | | `--slot-save-path PATH` | path to save slot kv cache (default: disabled) | | `--jinja` | use jinja template for chat (default: disabled)
(env: LLAMA_ARG_JINJA) | -| `--reasoning-format FORMAT` | controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:
- none: leaves thoughts unparsed in `message.content`
- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)
(default: deepseek)
(env: LLAMA_ARG_THINK) | +| `--reasoning-format FORMAT` | controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:
- none: leaves thoughts unparsed in `message.content`
- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)
(default: auto)
(env: LLAMA_ARG_THINK) | | `--reasoning-budget N` | controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)
(env: LLAMA_ARG_THINK_BUDGET) | -| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted (unless --jinja is set before this flag):
list of built-in templates:
bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, falcon3, gemma, gigachat, glmedge, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, phi3, phi4, rwkv-world, smolvlm, vicuna, vicuna-orca, yandex, zephyr
(env: LLAMA_ARG_CHAT_TEMPLATE) | -| `--chat-template-file JINJA_TEMPLATE_FILE` | set custom jinja chat template file (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted (unless --jinja is set before this flag):
list of built-in templates:
bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, falcon3, gemma, gigachat, glmedge, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, phi3, phi4, rwkv-world, smolvlm, vicuna, vicuna-orca, yandex, zephyr
(env: LLAMA_ARG_CHAT_TEMPLATE_FILE) | -| `--no-prefill-assistant` | whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)
when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled
(env: LLAMA_ARG_NO_PREFILL_ASSISTANT) | +| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted (unless --jinja is set before this flag):
list of built-in templates:
bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr
(env: LLAMA_ARG_CHAT_TEMPLATE) | +| `--chat-template-file JINJA_TEMPLATE_FILE` | set custom jinja chat template file (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted (unless --jinja is set before this flag):
list of built-in templates:
bailing, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr
(env: LLAMA_ARG_CHAT_TEMPLATE_FILE) | +| `--no-prefill-assistant` | whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)
when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled

(env: LLAMA_ARG_NO_PREFILL_ASSISTANT) | | `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
| | `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) | +| `-td, --threads-draft N` | number of threads to use during generation (default: same as --threads) | +| `-tbd, --threads-batch-draft N` | number of threads to use during batch and prompt processing (default: same as --threads-draft) | | `--draft-max, --draft, --draft-n N` | number of tokens to draft for speculative decoding (default: 16)
(env: LLAMA_ARG_DRAFT_MAX) | | `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 0)
(env: LLAMA_ARG_DRAFT_MIN) | | `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.8)
(env: LLAMA_ARG_DRAFT_P_MIN) | @@ -188,8 +206,7 @@ The project is under active development, and we are [looking for feedback and co | `-devd, --device-draft ` | comma-separated list of devices to use for offloading the draft model (none = don't offload)
use --list-devices to see a list of available devices | | `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model
(env: LLAMA_ARG_N_GPU_LAYERS_DRAFT) | | `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused)
(env: LLAMA_ARG_MODEL_DRAFT) | -| `-ctkd, --cache-type-k-draft TYPE` | KV cache data type for K for speculative decoding model
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_K_DRAFT) | -| `-ctvd, --cache-type-v-draft TYPE` | KV cache data type for V for speculative decoding model
allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1
(default: f16)
(env: LLAMA_ARG_CACHE_TYPE_V_DRAFT) | +| `--spec-replace TARGET DRAFT` | translate the string in TARGET into DRAFT if the draft model and main model are not compatible | | `-mv, --model-vocoder FNAME` | vocoder model for audio generation (default: unused) | | `--tts-use-guide-tokens` | Use guide tokens to improve TTS word recall | | `--embd-bge-small-en-default` | use default bge-small-en-v1.5 model (note: can download weights from the internet) | @@ -200,6 +217,7 @@ The project is under active development, and we are [looking for feedback and co | `--fim-qwen-7b-default` | use default Qwen 2.5 Coder 7B (note: can download weights from the internet) | | `--fim-qwen-7b-spec` | use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet) | | `--fim-qwen-14b-spec` | use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet) | +| `--fim-qwen-30b-default` | use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet) | Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var. @@ -866,25 +884,23 @@ Same as the `/v1/embeddings` endpoint. ### GET `/slots`: Returns the current slots processing state -> [!WARNING] -> This endpoint is intended for debugging and may be modified in future versions. For security reasons, we strongly advise against enabling it in production environments. - -This endpoint is disabled by default and can be enabled with `--slots` +This endpoint is enabled by default and can be disabled with `--no-slots`. It can be used to query various per-slot metrics, such as speed, processed tokens, sampling parameters, etc. If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots. **Response format** -Example: +
+Example with 2 slots ```json [ { "id": 0, - "id_task": -1, - "n_ctx": 1024, + "id_task": 135, + "n_ctx": 65536, "speculative": false, - "is_processing": false, + "is_processing": true, "params": { "n_predict": -1, "seed": 4294967295, @@ -894,6 +910,7 @@ Example: "top_k": 40, "top_p": 0.949999988079071, "min_p": 0.05000000074505806, + "top_n_sigma": -1.0, "xtc_probability": 0.0, "xtc_threshold": 0.10000000149011612, "typical_p": 1.0, @@ -904,17 +921,10 @@ Example: "dry_multiplier": 0.0, "dry_base": 1.75, "dry_allowed_length": 2, - "dry_penalty_last_n": -1, - "dry_sequence_breakers": [ - "\n", - ":", - "\"", - "*" - ], + "dry_penalty_last_n": 131072, "mirostat": 0, "mirostat_tau": 5.0, "mirostat_eta": 0.10000000149011612, - "stop": [], "max_tokens": -1, "n_keep": 0, "n_discard": 0, @@ -922,8 +932,12 @@ Example: "stream": true, "n_probs": 0, "min_keep": 0, - "grammar": "", + "chat_format": "GPT-OSS", + "reasoning_format": "none", + "reasoning_in_content": false, + "thinking_forced_open": false, "samplers": [ + "penalties", "dry", "top_k", "typ_p", @@ -933,22 +947,89 @@ Example: "temperature" ], "speculative.n_max": 16, - "speculative.n_min": 5, - "speculative.p_min": 0.8999999761581421, - "timings_per_token": false + "speculative.n_min": 0, + "speculative.p_min": 0.75, + "timings_per_token": false, + "post_sampling_probs": false, + "lora": [] }, - "prompt": "", "next_token": { "has_next_token": true, "has_new_line": false, "n_remain": -1, - "n_decoded": 0, - "stopping_word": "" + "n_decoded": 0 + } + }, + { + "id": 1, + "id_task": 0, + "n_ctx": 65536, + "speculative": false, + "is_processing": true, + "params": { + "n_predict": -1, + "seed": 4294967295, + "temperature": 0.800000011920929, + "dynatemp_range": 0.0, + "dynatemp_exponent": 1.0, + "top_k": 40, + "top_p": 0.949999988079071, + "min_p": 0.05000000074505806, + "top_n_sigma": -1.0, + "xtc_probability": 0.0, + "xtc_threshold": 0.10000000149011612, + "typical_p": 1.0, + "repeat_last_n": 64, + "repeat_penalty": 1.0, + "presence_penalty": 0.0, + "frequency_penalty": 0.0, + "dry_multiplier": 0.0, + "dry_base": 1.75, + "dry_allowed_length": 2, + "dry_penalty_last_n": 131072, + "mirostat": 0, + "mirostat_tau": 5.0, + "mirostat_eta": 0.10000000149011612, + "max_tokens": -1, + "n_keep": 0, + "n_discard": 0, + "ignore_eos": false, + "stream": true, + "n_probs": 0, + "min_keep": 0, + "chat_format": "GPT-OSS", + "reasoning_format": "none", + "reasoning_in_content": false, + "thinking_forced_open": false, + "samplers": [ + "penalties", + "dry", + "top_k", + "typ_p", + "top_p", + "min_p", + "xtc", + "temperature" + ], + "speculative.n_max": 16, + "speculative.n_min": 0, + "speculative.p_min": 0.75, + "timings_per_token": false, + "post_sampling_probs": false, + "lora": [] + }, + "next_token": { + "has_next_token": true, + "has_new_line": true, + "n_remain": -1, + "n_decoded": 136 } } ] ``` +
+ ### GET `/metrics`: Prometheus compatible metrics exporter This endpoint is only accessible if `--metrics` is set. @@ -1143,6 +1224,8 @@ The `response_format` parameter supports both plain JSON output (e.g. `{"type": `parse_tool_calls`: Whether to parse the generated tool call. +`parallel_tool_calls` : Whether to enable parallel/multiple tool calls (only supported on some models, verification is based on jinja template). + *Examples:* You can use either Python `openai` library with appropriate checkpoints: diff --git a/tools/server/server.cpp b/tools/server/server.cpp index 6eb5aeb582b3a..e0302e2f2f777 100644 --- a/tools/server/server.cpp +++ b/tools/server/server.cpp @@ -141,7 +141,7 @@ struct slot_params { // Embeddings int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm) - json to_json() const { + json to_json(bool only_metrics = false) const { std::vector samplers; samplers.reserve(sampling.samplers.size()); for (const auto & sampler : sampling.samplers) { @@ -153,9 +153,55 @@ struct slot_params { lora.push_back({{"id", i}, {"scale", this->lora[i].scale}}); } + if (only_metrics) { + return json { + {"n_predict", n_predict}, // Server configured n_predict + {"seed", sampling.seed}, + {"temperature", sampling.temp}, + {"dynatemp_range", sampling.dynatemp_range}, + {"dynatemp_exponent", sampling.dynatemp_exponent}, + {"top_k", sampling.top_k}, + {"top_p", sampling.top_p}, + {"min_p", sampling.min_p}, + {"top_n_sigma", sampling.top_n_sigma}, + {"xtc_probability", sampling.xtc_probability}, + {"xtc_threshold", sampling.xtc_threshold}, + {"typical_p", sampling.typ_p}, + {"repeat_last_n", sampling.penalty_last_n}, + {"repeat_penalty", sampling.penalty_repeat}, + {"presence_penalty", sampling.penalty_present}, + {"frequency_penalty", sampling.penalty_freq}, + {"dry_multiplier", sampling.dry_multiplier}, + {"dry_base", sampling.dry_base}, + {"dry_allowed_length", sampling.dry_allowed_length}, + {"dry_penalty_last_n", sampling.dry_penalty_last_n}, + {"mirostat", sampling.mirostat}, + {"mirostat_tau", sampling.mirostat_tau}, + {"mirostat_eta", sampling.mirostat_eta}, + {"max_tokens", n_predict}, // User configured n_predict + {"n_keep", n_keep}, + {"n_discard", n_discard}, + {"ignore_eos", sampling.ignore_eos}, + {"stream", stream}, + {"n_probs", sampling.n_probs}, + {"min_keep", sampling.min_keep}, + {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)}, + {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)}, + {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content}, + {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open}, + {"samplers", samplers}, + {"speculative.n_max", speculative.n_max}, + {"speculative.n_min", speculative.n_min}, + {"speculative.p_min", speculative.p_min}, + {"timings_per_token", timings_per_token}, + {"post_sampling_probs", post_sampling_probs}, + {"lora", lora}, + }; + } + auto grammar_triggers = json::array(); for (const auto & trigger : sampling.grammar_triggers) { - server_grammar_trigger ct(std::move(trigger)); + server_grammar_trigger ct(trigger); grammar_triggers.push_back(ct.to_json()); } @@ -1572,7 +1618,26 @@ struct server_slot { } } - json to_json() const { + json to_json(bool only_metrics = false) const { + if (only_metrics) { + return json { + {"id", id}, + {"id_task", id_task}, + {"n_ctx", n_ctx}, + {"speculative", can_speculate()}, + {"is_processing", is_processing()}, + {"params", params.to_json(true)}, + {"next_token", + { + {"has_next_token", has_next_token}, + {"has_new_line", has_new_line}, + {"n_remain", n_remaining}, + {"n_decoded", n_decoded}, + } + }, + }; + } + return json { {"id", id}, {"id_task", id_task}, @@ -2485,11 +2550,12 @@ struct server_context { return slot.has_next_token; // continue } - void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) { + void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const { size_t n_probs = slot.params.sampling.n_probs; size_t n_vocab = llama_vocab_n_tokens(vocab); + if (post_sampling) { - const auto * cur_p = common_sampler_get_candidates(slot.smpl); + const auto * cur_p = common_sampler_get_candidates(slot.smpl, true); const size_t max_probs = cur_p->size; // set probability for sampled token @@ -2874,7 +2940,7 @@ struct server_context { int n_processing_slots = 0; for (server_slot & slot : slots) { - json slot_data = slot.to_json(); + json slot_data = slot.to_json(true); if (slot.is_processing()) { n_processing_slots++; @@ -4271,16 +4337,20 @@ int main(int argc, char ** argv) { } }; - const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { + const auto handle_props = [¶ms, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { // this endpoint is publicly available, please only return what is safe to be exposed json data = { { "default_generation_settings", ctx_server.default_generation_settings_for_props }, { "total_slots", ctx_server.params_base.n_parallel }, { "model_path", ctx_server.params_base.model.path }, - { "modalities", json{ + { "modalities", json { {"vision", ctx_server.oai_parser_opt.allow_image}, {"audio", ctx_server.oai_parser_opt.allow_audio}, } }, + { "endpoint_slots", params.endpoint_slots }, + { "endpoint_props", params.endpoint_props }, + { "endpoint_metrics", params.endpoint_metrics }, + { "webui", params.webui }, { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) }, { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)}, { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)}, @@ -4898,6 +4968,8 @@ int main(int argc, char ** argv) { {"id", i}, {"path", lora.path}, {"scale", lora.scale}, + {"task_name", lora.task_name}, + {"prompt_prefix", lora.prompt_prefix}, }); } res_ok(res, result); diff --git a/tools/server/tests/unit/test_ctx_shift.py b/tools/server/tests/unit/test_ctx_shift.py index 8f51bc301a74c..92e49f2bb05a4 100644 --- a/tools/server/tests/unit/test_ctx_shift.py +++ b/tools/server/tests/unit/test_ctx_shift.py @@ -15,25 +15,26 @@ def create_server(): global server server = ServerPreset.tinyllama2() - server.n_ctx = 256 + server.n_ctx = 512 server.n_slots = 2 + server.n_predict = 128 def test_ctx_shift_enabled(): # the prompt is 301 tokens - # the slot context is 256/2 = 128 tokens - # the prompt is truncated to keep the last 109 tokens - # 64 tokens are generated thanks to shifting the context when it gets full + # the slot context is 512/2 = 256 tokens + # the prompt is truncated to keep the last (301 - 256/2) = 173 tokens + # 96 tokens are generated thanks to shifting the context when it gets full global server server.enable_ctx_shift = True server.start() res = server.make_request("POST", "/completion", data={ - "n_predict": 64, + "n_predict": 96, "prompt": LONG_TEXT, }) assert res.status_code == 200 - assert res.body["timings"]["prompt_n"] == 109 - assert res.body["timings"]["predicted_n"] == 64 + assert res.body["timings"]["prompt_n"] == 173 + assert res.body["timings"]["predicted_n"] == 96 assert res.body["truncated"] is True diff --git a/tools/server/tests/unit/test_speculative.py b/tools/server/tests/unit/test_speculative.py index 38ca4325ba675..65952de8b8d4c 100644 --- a/tools/server/tests/unit/test_speculative.py +++ b/tools/server/tests/unit/test_speculative.py @@ -14,6 +14,7 @@ def create_server(): server.model_draft = download_file(MODEL_DRAFT_FILE_URL) server.draft_min = 4 server.draft_max = 8 + server.fa = "off" @pytest.fixture(autouse=True) diff --git a/tools/server/tests/utils.py b/tools/server/tests/utils.py index 5f42bcae61e1a..cda7434d7c201 100644 --- a/tools/server/tests/utils.py +++ b/tools/server/tests/utils.py @@ -26,10 +26,7 @@ import wget -DEFAULT_HTTP_TIMEOUT = 12 - -if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ: - DEFAULT_HTTP_TIMEOUT = 30 +DEFAULT_HTTP_TIMEOUT = 30 class ServerResponse: @@ -69,7 +66,7 @@ class ServerProcess: n_slots: int | None = None ctk: str | None = None ctv: str | None = None - fa: bool | None = None + fa: str | None = None server_continuous_batching: bool | None = False server_embeddings: bool | None = False server_reranking: bool | None = False @@ -151,6 +148,8 @@ def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None: server_args.append("--metrics") if self.server_slots: server_args.append("--slots") + else: + server_args.append("--no-slots") if self.pooling: server_args.extend(["--pooling", self.pooling]) if self.model_alias: @@ -164,7 +163,7 @@ def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None: if self.ctv: server_args.extend(["-ctv", self.ctv]) if self.fa is not None: - server_args.append("-fa") + server_args.extend(["-fa", self.fa]) if self.n_predict: server_args.extend(["--n-predict", self.n_predict]) if self.slot_save_path: @@ -430,7 +429,7 @@ def bert_bge_small_with_fa() -> ServerProcess: server.n_batch = 300 server.n_ubatch = 300 server.n_slots = 2 - server.fa = True + server.fa = "on" server.seed = 42 server.server_embeddings = True return server diff --git a/tools/tts/tts.cpp b/tools/tts/tts.cpp index 18f01a9946350..eaf56591d9d11 100644 --- a/tools/tts/tts.cpp +++ b/tools/tts/tts.cpp @@ -895,7 +895,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14 codes.push_back(new_token_id); - const auto * cands = common_sampler_get_candidates(smpl[i]); + const auto * cands = common_sampler_get_candidates(smpl[i], false); // is it an end of generation? -> mark the stream as finished if (llama_vocab_is_eog(vocab, new_token_id) || n_decode == n_predict) {