|
7 | 7 |
|
8 | 8 | <meta name="twitter:card" content="summary"/>
|
9 | 9 | <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
10 |
| - <meta name="twitter:title" content="Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more"/> |
| 10 | + <meta name="twitter:title" content="labml.ai 带注释的 PyTorch 版论文实现"/> |
11 | 11 | <meta name="twitter:description" content=""/>
|
12 | 12 | <meta name="twitter:site" content="@labmlai"/>
|
13 | 13 | <meta name="twitter:creator" content="@labmlai"/>
|
14 | 14 |
|
15 | 15 | <meta property="og:url" content="https://nn.labml.ai/index.html"/>
|
16 |
| - <meta property="og:title" content="Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more"/> |
| 16 | + <meta property="og:title" content="labml.ai 带注释的 PyTorch 版论文实现"/> |
17 | 17 | <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
18 |
| - <meta property="og:site_name" content="Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more"/> |
| 18 | + <meta property="og:site_name" content="labml.ai 带注释的 PyTorch 版论文实现"/> |
19 | 19 | <meta property="og:type" content="object"/>
|
20 |
| - <meta property="og:title" content="Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more"/> |
| 20 | + <meta property="og:title" content="labml.ai 带注释的 PyTorch 版论文实现"/> |
21 | 21 | <meta property="og:description" content=""/>
|
22 | 22 |
|
23 |
| - <title>Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more</title> |
| 23 | + <title>labml.ai 带注释的 PyTorch 版论文实现</title> |
24 | 24 | <link rel="shortcut icon" href="/icon.png"/>
|
25 | 25 | <link rel="stylesheet" href="./pylit.css?v=1">
|
26 | 26 | <link rel="canonical" href="https://nn.labml.ai/index.html"/>
|
|
69 | 69 | <div class='section-link'>
|
70 | 70 | <a href='#section-0'>#</a>
|
71 | 71 | </div>
|
72 |
| - <h1><a href="index.html">Annotated Research Paper Implementations: Transformers, StyleGAN, Stable Diffusion, DDPM/DDIM, LayerNorm, Nucleus Sampling and more</a></h1> |
73 |
| -<p>这是神经网络和相关算法的简单 PyTorch 实现的集合。<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations">这些实现</a>与解释一起记录,<a href="index.html">网站将这些内容</a>呈现为并排格式的注释。我们相信这些将帮助您更好地理解这些算法。</p> |
| 72 | + <h1><a href="index.html">labml.ai 带注释的 PyTorch 版论文实现</a></h1> |
| 73 | +<p>这是一个用 PyTorch 实现各种神经网络和相关算法的集合。每个算法的<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations">代码实现</a>都有详细的解释说明,且在<a href="index.html">网站</a>上与代码逐行对应。我们相信,这些内容将帮助您更好地理解这些算法。</p> |
74 | 74 | <p><img alt="Screenshot" src="dqn-light.png"></p>
|
75 |
| -<p>我们正在积极维护这个仓库并添加新的实现。<a href="https://twitter.com/labmlai"><img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social"></a>以获取更新。</p> |
| 75 | +<p>我们正在积极维护这个仓库并添加新的代码实现<a href="https://twitter.com/labmlai"><img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social"></a>以获取更新。</p> |
76 | 76 | <h2>翻译</h2>
|
77 | 77 | <h3><strong><a href="https://nn.labml.ai">英语(原版)</a></strong></h3>
|
78 | 78 | </a><h3><strong><a href="https://nn.labml.ai/zh/">中文(翻译)</strong></h3>
|
79 |
| -</a><h3><strong><a href="https://nn.labml.ai/ja/">日语(已翻译)</strong></h3> |
80 |
| -<h2>纸质实现</h2> |
81 |
| -<h4>✨ <a href="transformers/index.html">变形金刚</a></h4> |
82 |
| -<ul><li><a href="transformers/mha.html">多头关注</a></li> |
83 |
| -<li><a href="transformers/models.html">变压器积木</a></li> |
84 |
| -<li><a href="transformers/xl/index.html">变压器 XL</a></li> |
85 |
| -<li><a href="transformers/xl/relative_mha.html">相对多头的注意力</a></li> |
86 |
| -<li><a href="transformers/rope/index.html">旋转位置嵌入 (ROPE)</a></li> |
87 |
| -<li><a href="transformers/alibi/index.html">注意线性偏差 (AliBI)</a></li> |
88 |
| -<li><a href="transformers/retro/index.html">复古</a></li> |
89 |
| -<li><a href="transformers/compressive/index.html">压缩变压器</a></li> |
| 79 | +</a><h3><strong><a href="https://nn.labml.ai/ja/">日语(翻译)</strong></h3> |
| 80 | +<h2>论文实现</h2> |
| 81 | +<h4>✨ <a href="transformers/index.html">Transformers</a></h4> |
| 82 | +<ul><li><a href="transformers/mha.html">多头注意力</a></li> |
| 83 | +<li><a href="transformers/models.html">Transformer 构建模块</a></li> |
| 84 | +<li><a href="transformers/xl/index.html">Transformer XL</a></li> |
| 85 | +<li><a href="transformers/xl/relative_mha.html">相对多头注意力</a></li> |
| 86 | +<li><a href="transformers/rope/index.html">旋转式位置编码 (ROPE)</a></li> |
| 87 | +<li><a href="transformers/alibi/index.html">线性偏差注意力 (AliBI)</a></li> |
| 88 | +<li><a href="transformers/retro/index.html">RETRO</a></li> |
| 89 | +<li><a href="transformers/compressive/index.html">压缩 Transformer</a></li> |
90 | 90 | <li><a href="transformers/gpt/index.html">GPT 架构</a></li>
|
91 | 91 | <li><a href="transformers/glu_variants/simple.html">GLU 变体</a></li>
|
92 |
| -<li><a href="transformers/knn/index.html">knn-LM:通过记忆进行泛化</a></li> |
93 |
| -<li><a href="transformers/feedback/index.html">反馈变压器</a></li> |
94 |
| -<li><a href="transformers/switch/index.html">开关变压器</a></li> |
95 |
| -<li><a href="transformers/fast_weights/index.html">快速重量变压器</a></li> |
| 92 | +<li><a href="transformers/knn/index.html">kNN-LM:通过记忆实现泛化</a></li> |
| 93 | +<li><a href="transformers/feedback/index.html">自反馈 Transformer</a></li> |
| 94 | +<li><a href="transformers/switch/index.html">Switch Transformer</a></li> |
| 95 | +<li><a href="transformers/fast_weights/index.html">快速权重 Transformer</a></li> |
96 | 96 | <li><a href="transformers/fnet/index.html">FNet</a></li>
|
97 |
| -<li><a href="transformers/aft/index.html">免注意变压器</a></li> |
98 |
| -<li><a href="transformers/mlm/index.html">屏蔽语言模型</a></li> |
99 |
| -<li><a href="transformers/mlp_mixer/index.html">MLP 混音器:面向视觉的全 MLP 架构</a></li> |
100 |
| -<li><a href="transformers/gmlp/index.html">注意 MLP (gMLP)</a></li> |
101 |
| -<li><a href="transformers/vit/index.html">视觉变压器 (ViT)</a></li> |
| 97 | +<li><a href="transformers/aft/index.html">无注意力 Transformer</a></li> |
| 98 | +<li><a href="transformers/mlm/index.html">掩码语言模型</a></li> |
| 99 | +<li><a href="transformers/mlp_mixer/index.html">MLP-Mixer:一种用于视觉的全 MLP 架构</a></li> |
| 100 | +<li><a href="transformers/gmlp/index.html">门控多层感知器 (gMLP)</a></li> |
| 101 | +<li><a href="transformers/vit/index.html">视觉 Transformer (ViT)</a></li> |
102 | 102 | <li><a href="transformers/primer_ez/index.html">Primer</a></li>
|
103 |
| -<li><a href="transformers/hour_glass/index.html">沙漏</a></li></ul> |
| 103 | +<li><a href="transformers/hour_glass/index.html">沙漏网络</a></li></ul> |
104 | 104 | <h4>✨ <a href="neox/index.html">Eleuther GPT-neox</a></h4>
|
105 |
| -<li><a href="neox/samples/generate.html">在 48GB GPU 上生成</a></li> <ul> |
106 |
| -<li><a href="neox/samples/finetune.html">两个 48GB GPU 上的 Finetune</a></li> |
| 105 | +<li><a href="neox/samples/generate.html">在一块 48GB GPU 上生成</a></li> <ul> |
| 106 | +<li><a href="neox/samples/finetune.html">在两块 48GB GPU 上微调</a></li> |
107 | 107 | <li><a href="neox/utils/llm_int8.html">llm.int8 ()</a></li></ul>
|
108 | 108 | <h4>✨ <a href="diffusion/index.html">扩散模型</a></h4>
|
109 | 109 | <ul><li><a href="diffusion/ddpm/index.html">去噪扩散概率模型 (DDPM)</a></li>
|
110 |
| -<li><a href="diffusion/stable_diffusion/sampler/ddim.html">降噪扩散隐含模型 (DDIM)</a></li> |
| 110 | +<li><a href="diffusion/stable_diffusion/sampler/ddim.html">去噪扩散隐式模型 (DDIM)</a></li> |
111 | 111 | <li><a href="diffusion/stable_diffusion/latent_diffusion.html">潜在扩散模型</a></li>
|
112 |
| -<li><a href="diffusion/stable_diffusion/index.html">稳定的扩散</a></li></ul> |
| 112 | +<li><a href="diffusion/stable_diffusion/index.html">Stable Diffusion</a></li></ul> |
113 | 113 | <h4>✨ <a href="gan/index.html">生成对抗网络</a></h4>
|
114 |
| -<ul><li><a href="gan/original/index.html">原装 GAN</a></li> |
115 |
| -<li><a href="gan/dcgan/index.html">具有深度卷积网络的 GAN</a></li> |
116 |
| -<li><a href="gan/cycle_gan/index.html">循环增益</a></li> |
| 114 | +<ul><li><a href="gan/original/index.html">原始 GAN</a></li> |
| 115 | +<li><a href="gan/dcgan/index.html">使用深度卷积网络的 GAN</a></li> |
| 116 | +<li><a href="gan/cycle_gan/index.html">循环 GAN</a></li> |
117 | 117 | <li><a href="gan/wasserstein/index.html">Wasserstein GAN</a></li>
|
118 |
| -<li><a href="gan/wasserstein/gradient_penalty/index.html">Wasserstein GAN 带梯度惩罚</a></li> |
| 118 | +<li><a href="gan/wasserstein/gradient_penalty/index.html">具有梯度惩罚的 Wasserstein GAN</a></li> |
119 | 119 | <li><a href="gan/stylegan/index.html">StyleGan 2</a></li></ul>
|
120 |
| -<h4>✨ <a href="recurrent_highway_networks/index.html">循环高速公路网络</a></h4> |
| 120 | +<h4>✨ <a href="recurrent_highway_networks/index.html">循环高速路网络</a></h4> |
121 | 121 | <h4>✨ <a href="lstm/index.html">LSTM</a></h4>
|
122 |
| -<h4>✨ <a href="hypernetworks/hyper_lstm.html">超级网络-HyperLSTM</a></h4> |
| 122 | +<h4>✨ <a href="hypernetworks/hyper_lstm.html">超网络-HyperLSTM</a></h4> |
123 | 123 | <h4>✨ <a href="resnet/index.html">ResNet</a></h4>
|
124 |
| -<h4>✨ <a href="conv_mixer/index.html">混音器</a></h4> |
| 124 | +<h4>✨ <a href="conv_mixer/index.html">ConvMixer</a></h4> |
125 | 125 | <h4>✨ <a href="capsule_networks/index.html">胶囊网络</a></h4>
|
126 | 126 | <h4>✨ <a href="unet/index.html">U-Net</a></h4>
|
127 |
| -<h4>✨ <a href="sketch_rnn/index.html">素描 RNN</a></h4> |
128 |
| -<h4>✨ 图形神经网络</h4> |
129 |
| -<ul><li><a href="graphs/gat/index.html">图关注网络 (GAT)</a></li> |
130 |
| -<li><a href="graphs/gatv2/index.html">Graph 注意力网络 v2 (GATv2)</a></li></ul> |
| 127 | +<h4>✨ <a href="sketch_rnn/index.html">Sketch RNN</a></h4> |
| 128 | +<h4>✨ 图神经网络</h4> |
| 129 | +<ul><li><a href="graphs/gat/index.html">图注意力网络 (GAT)</a></li> |
| 130 | +<li><a href="graphs/gatv2/index.html">图注意力网络 v2 (GATv2)</a></li></ul> |
131 | 131 | <h4>✨ <a href="rl/index.html">强化学习</a></h4>
|
132 |
| -<li>基于<a href="rl/ppo/gae.html">广义<a href="rl/ppo/index.html">优势估计的近端策略</a>优</a>化</li> <ul> |
133 |
| -D@@ <li><a href="rl/dqn/index.html">eep Q Network</a> s 带有<a href="rl/dqn/model.html">决斗网络</a>、<a href="rl/dqn/replay_buffer.html">优先重播</a>和 Double Q Network。</li></ul> |
134 |
| -<h4>✨ <a href="cfr/index.html">反事实遗憾最小化(CFR)</a></h4> |
135 |
| -<p>使用CFR解决信息不完整的游戏,例如使用CFR的扑克。</p> |
| 132 | +<ul><li><a href="rl/ppo/index.html">近端策略优化</a>与<a href="rl/ppo/gae.html">广义优势估计</a></li> |
| 133 | +<li>具有<a href="rl/dqn/model.html">对抗网络</a>、<a href="rl/dqn/replay_buffer.html">优先回放 </a>和双 Q 网络的<a href="rl/dqn/index.html">深度 Q 网络</a></li></ul> |
| 134 | +<h4>✨ <a href="cfr/index.html">虚拟遗憾最小化(CFR)</a></h4> |
| 135 | +<p>使用 CFR 解决诸如扑克等不完全信息游戏</p> |
136 | 136 | <ul><li><a href="cfr/kuhn/index.html">库恩扑克</a></li></ul>
|
137 | 137 | <h4>✨ <a href="optimizers/index.html">优化器</a></h4>
|
138 |
| -<ul><li><a href="optimizers/adam.html">Adam</a> </li> |
139 |
| -<li><a href="optimizers/amsgrad.html">AMSGrad</a> </li> |
140 |
| -<li><a href="optimizers/adam_warmup.html">Adam Optimizer with warmup</a> </li> |
141 |
| -<li><a href="optimizers/noam.html">Noam Optimizer</a> </li> |
142 |
| -<li><a href="optimizers/radam.html">Rectified Adam Optimizer</a> </li> |
143 |
| -<li><a href="optimizers/ada_belief.html">AdaBelief Optimizer</a> </li> |
| 138 | +<ul><li><a href="optimizers/adam.html">Adam 优化器</a></li> |
| 139 | +<li><a href="optimizers/amsgrad.html">AMSGrad 优化器</a></li> |
| 140 | +<li><a href="optimizers/adam_warmup.html">具有预热的 Adam 优化器</a></li> |
| 141 | +<li><a href="optimizers/noam.html">Noam 优化器</a></li> |
| 142 | +<li><a href="optimizers/radam.html">RAdam 优化器</a></li> |
| 143 | +<li><a href="optimizers/ada_belief.html">AdaBelief 优化器</a></li> |
144 | 144 | <li><a href="optimizers/sophia.html">Sophia-G Optimizer</a></li></ul>
|
145 |
| -<h4>✨ <a href="normalization/index.html">规范化层</a></h4> |
146 |
| -<ul><li><a href="normalization/batch_norm/index.html">批量标准化</a></li> |
147 |
| -<li><a href="normalization/layer_norm/index.html">层规范化</a></li> |
148 |
| -<li><a href="normalization/instance_norm/index.html">实例规范化</a></li> |
149 |
| -<li><a href="normalization/group_norm/index.html">群组规范化</a></li> |
150 |
| -<li><a href="normalization/weight_standardization/index.html">重量标准化</a></li> |
151 |
| -<li><a href="normalization/batch_channel_norm/index.html">批量信道规范化</a></li> |
152 |
| -<li><a href="normalization/deep_norm/index.html">深度规范</a></li></ul> |
| 145 | +<h4>✨ <a href="normalization/index.html">归一化层</a></h4> |
| 146 | +<ul><li><a href="normalization/batch_norm/index.html">批量归一化</a></li> |
| 147 | +<li><a href="normalization/layer_norm/index.html">层归一化</a></li> |
| 148 | +<li><a href="normalization/instance_norm/index.html">实例归一化</a></li> |
| 149 | +<li><a href="normalization/group_norm/index.html">组归一化</a></li> |
| 150 | +<li><a href="normalization/weight_standardization/index.html">权重标准化</a></li> |
| 151 | +<li><a href="normalization/batch_channel_norm/index.html">批-通道归一化</a></li> |
| 152 | +<li><a href="normalization/deep_norm/index.html">DeepNorm</a></li></ul> |
153 | 153 | <h4>✨ <a href="distillation/index.html">蒸馏</a></h4>
|
154 | 154 | <h4>✨ <a href="adaptive_computation/index.html">自适应计算</a></h4>
|
155 | 155 | <ul><li><a href="adaptive_computation/ponder_net/index.html">PonderNet</a></li></ul>
|
156 | 156 | <h4>✨ <a href="uncertainty/index.html">不确定性</a></h4>
|
157 |
| -<ul><li><a href="uncertainty/evidence/index.html">用于量化分类不确定性的证据性深度学习</a></li></ul> |
158 |
| -<h4>✨ <a href="activations/index.html">激活</a></h4> |
159 |
| -<ul><li><a href="activations/fta/index.html">模糊平铺激活</a></li></ul> |
| 157 | +<ul><li><a href="uncertainty/evidence/index.html">用于量化分类不确定性的证据深度学习</a></li></ul> |
| 158 | +<h4>✨ <a href="activations/index.html">激活函数</a></h4> |
| 159 | +<ul><li><a href="activations/fta/index.html">模糊平铺激活函数</a></li></ul> |
160 | 160 | <h4>✨ <a href="sampling/index.html">语言模型采样技术</a></h4>
|
161 | 161 | <ul><li><a href="sampling/greedy.html">贪婪采样</a></li>
|
162 | 162 | <li><a href="sampling/temperature.html">温度采样</a></li>
|
163 |
| -<li><a href="sampling/top_k.html">前 k 个采样</a></li> |
164 |
| -<li><a href="sampling/nucleus.html">原子核采样</a></li></ul> |
165 |
| -<h4>✨ <a href="scaling/index.html">可扩展的训练/推理</a></h4> |
166 |
| -<ul><li><a href="scaling/zero3/index.html">Zero3 内存优化</a></li></ul> |
| 163 | +<li><a href="sampling/top_k.html">Top-K 采样</a></li> |
| 164 | +<li><a href="sampling/nucleus.html">核采样</a></li></ul> |
| 165 | +<h4>✨ <a href="scaling/index.html">可扩展训练/推理</a></h4> |
| 166 | +<ul><li><a href="scaling/zero3/index.html">ZeRO-3 内存优化</a></li></ul> |
167 | 167 | <h3>安装</h3>
|
168 | 168 | <pre class="highlight lang-bash"><code><span></span>pip<span class="w"> </span>install<span class="w"> </span>labml-nn</code></pre>
|
169 | 169 |
|
|
0 commit comments