|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +from transformers import AutoTokenizer |
| 4 | + |
| 5 | +tokenizer = AutoTokenizer.from_pretrained("gpt2") |
| 6 | + |
| 7 | +# config from GPT |
| 8 | +config = { |
| 9 | + "_name_or_path": "gpt2", |
| 10 | + "activation_function": "gelu_new", |
| 11 | + "architectures": [ |
| 12 | + "GPT2LMHeadModel" |
| 13 | + ], |
| 14 | + "attn_pdrop": 0.1, |
| 15 | + "bos_token_id": 50256, |
| 16 | + "embd_pdrop": 0.1, |
| 17 | + "eos_token_id": 0, |
| 18 | + "initializer_range": 0.02, |
| 19 | + "layer_norm_epsilon": 1e-05, |
| 20 | + "model_type": "gpt2", |
| 21 | + "n_ctx": 1024, |
| 22 | + "n_embd": 768, |
| 23 | + "n_head": 12, |
| 24 | + "n_inner": None, |
| 25 | + "n_layer": 12, |
| 26 | + "n_positions": 1024, |
| 27 | + "reorder_and_upcast_attn": False, |
| 28 | + "resid_pdrop": 0.1, |
| 29 | + "scale_attn_by_inverse_layer_idx": False, |
| 30 | + "scale_attn_weights": True, |
| 31 | + "summary_activation": None, |
| 32 | + "summary_first_dropout": 0.1, |
| 33 | + "summary_proj_to_labels": True, |
| 34 | + "summary_type": "cls_index", |
| 35 | + "summary_use_proj": True, |
| 36 | + "task_specific_params": { |
| 37 | + "text-generation": { |
| 38 | + "do_sample": True, |
| 39 | + "max_length": 50 |
| 40 | + } |
| 41 | + }, |
| 42 | + "transformers_version": "4.42.4", |
| 43 | + "use_cache": True, |
| 44 | + "vocab_size": 50257 |
| 45 | +} |
| 46 | + |
| 47 | +import math |
| 48 | +from torch import Tensor |
| 49 | + |
| 50 | + |
| 51 | +# from transformers |
| 52 | +class Conv1D(nn.Module): |
| 53 | + """ |
| 54 | + 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). |
| 55 | +
|
| 56 | + Basically works like a linear layer but the weights are transposed. |
| 57 | +
|
| 58 | + Args: |
| 59 | + nf (`int`): The number of output features. |
| 60 | + nx (`int`): The number of input features. |
| 61 | + """ |
| 62 | + |
| 63 | + def __init__(self, nf, nx): |
| 64 | + super().__init__() |
| 65 | + self.nf = nf |
| 66 | + self.weight = nn.Parameter(torch.empty(nx, nf)) |
| 67 | + self.bias = nn.Parameter(torch.zeros(nf)) |
| 68 | + nn.init.normal_(self.weight, std=0.02) |
| 69 | + |
| 70 | + def forward(self, x): |
| 71 | + size_out = x.size()[:-1] + (self.nf,) |
| 72 | + x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) |
| 73 | + x = x.view(size_out) |
| 74 | + return x |
| 75 | + |
| 76 | + |
| 77 | +# from transformers |
| 78 | +class NewGELUActivation(nn.Module): |
| 79 | + """ |
| 80 | + Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see |
| 81 | + the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415 |
| 82 | + """ |
| 83 | + |
| 84 | + def forward(self, input: Tensor) -> Tensor: |
| 85 | + return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0)))) |
| 86 | + |
| 87 | + |
| 88 | +class HeadFFN(nn.Module): # todo rename |
| 89 | + def __init__(self, dim): |
| 90 | + super().__init__() |
| 91 | + self.c_fc = Conv1D(dim, config['n_embd']) |
| 92 | + self.c_proj = Conv1D(config['n_embd'], dim) |
| 93 | + self.act = NewGELUActivation() |
| 94 | + self.dropout = nn.Dropout(config['resid_pdrop']) |
| 95 | + |
| 96 | + def forward(self, hidden_states): |
| 97 | + hidden_states = self.c_fc(hidden_states) |
| 98 | + hidden_states = self.act(hidden_states) |
| 99 | + hidden_states = self.c_proj(hidden_states) |
| 100 | + hidden_states = self.dropout(hidden_states) |
| 101 | + return hidden_states |
| 102 | + |
| 103 | + |
| 104 | +class MultiHead(nn.Module): |
| 105 | + def __init__(self): |
| 106 | + super().__init__() |
| 107 | + self.embed_dim = config['n_embd'] |
| 108 | + self.num_heads = config['n_head'] |
| 109 | + self.head_dim = self.embed_dim // self.num_heads |
| 110 | + self.split_size = self.embed_dim |
| 111 | + |
| 112 | + self.c_att = Conv1D(config['n_embd'] * 3, config['n_embd']) |
| 113 | + self.c_proj = Conv1D(config['n_embd'], config['n_embd']) |
| 114 | + |
| 115 | + self.resid_dropout = nn.Dropout(config['resid_pdrop']) |
| 116 | + self.attn_dropout = nn.Dropout(config['attn_pdrop']) |
| 117 | + |
| 118 | + def _split_heads(self, tensor, num_heads, attn_head_size): |
| 119 | + """ |
| 120 | + Splits hidden_size dim into attn_head_size and num_heads |
| 121 | + """ |
| 122 | + new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
| 123 | + tensor = tensor.view(new_shape) |
| 124 | + return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) |
| 125 | + |
| 126 | + def forward(self, hidden_states): |
| 127 | + batch_size, seq_length, _ = hidden_states.size() |
| 128 | + |
| 129 | + query, key, value = self.c_att(hidden_states).split(self.split_size, dim=2) |
| 130 | + |
| 131 | + query = self._split_heads(query, self.num_heads, self.head_dim) |
| 132 | + key = self._split_heads(key, self.num_heads, self.head_dim) |
| 133 | + value = self._split_heads(value, self.num_heads, self.head_dim) |
| 134 | + |
| 135 | + attn_output = torch.nn.functional.scaled_dot_product_attention( |
| 136 | + query, |
| 137 | + key, |
| 138 | + value, |
| 139 | + attn_mask=None, |
| 140 | + dropout_p=self.attn_dropout.p if self.training else 0.0, |
| 141 | + is_causal=True, # for the triangular mask |
| 142 | + ) |
| 143 | + |
| 144 | + # todo why this? |
| 145 | + attn_output = attn_output.transpose(1, 2).contiguous() |
| 146 | + attn_output = attn_output.view(batch_size, seq_length, self.embed_dim) |
| 147 | + |
| 148 | + attn_output = self.c_proj(attn_output) |
| 149 | + attn_output = self.resid_dropout(attn_output) |
| 150 | + |
| 151 | + return attn_output |
| 152 | + |
| 153 | + |
| 154 | +class Block(nn.Module): |
| 155 | + def __init__(self): |
| 156 | + super().__init__() |
| 157 | + self.pre_norm = nn.LayerNorm(config['n_embd'], eps=config['layer_norm_epsilon']) |
| 158 | + self.attn = MultiHead() |
| 159 | + self.post_norm = nn.LayerNorm(config['n_embd'], eps=config['layer_norm_epsilon']) |
| 160 | + self.ffn = HeadFFN(config['n_embd'] * 4) |
| 161 | + |
| 162 | + def forward(self, hidden_states): |
| 163 | + residual = hidden_states |
| 164 | + hidden_states = self.pre_norm(hidden_states) |
| 165 | + |
| 166 | + attn_output = self.attn(hidden_states) |
| 167 | + |
| 168 | + hidden_states = attn_output + residual |
| 169 | + residual = hidden_states |
| 170 | + hidden_states = self.post_norm(hidden_states) |
| 171 | + feed_forward_output = self.ffn(hidden_states) |
| 172 | + hidden_states = feed_forward_output + residual |
| 173 | + |
| 174 | + return hidden_states |
| 175 | + |
| 176 | + |
| 177 | +class GPTModel(nn.Module): |
| 178 | + # todo ignored token type embeds, past key values |
| 179 | + def __init__(self): |
| 180 | + super().__init__() |
| 181 | + |
| 182 | + self.token_embedding = nn.Embedding(config['vocab_size'], config['n_embd']) |
| 183 | + self.position_embedding = nn.Embedding(config['n_positions'], config['n_embd']) |
| 184 | + |
| 185 | + self.dropout = nn.Dropout(p=config['embd_pdrop'], inplace=False) |
| 186 | + |
| 187 | + self.blocks = nn.ModuleList([Block() for _ in range(config['n_layer'])]) |
| 188 | + |
| 189 | + self.final_norm = nn.LayerNorm(config['n_embd'], eps=config['layer_norm_epsilon']) |
| 190 | + |
| 191 | + self.lm_head = nn.Linear(config['n_embd'], config['vocab_size'], bias=False) |
| 192 | + |
| 193 | + def forward(self, input_ids): |
| 194 | + batch_size, input_shape = input_ids.size() |
| 195 | + |
| 196 | + token_embeddings = self.token_embedding(input_ids) # B T C |
| 197 | + position_ids = torch.arange(input_shape) # T C |
| 198 | + position_embeddings = self.position_embedding(position_ids) # B T C |
| 199 | + |
| 200 | + embeddings = token_embeddings + position_embeddings |
| 201 | + |
| 202 | + hidden_states = self.dropout(embeddings) |
| 203 | + |
| 204 | + for block in self.blocks: |
| 205 | + hidden_states = block(hidden_states) |
| 206 | + |
| 207 | + hidden_states = self.final_norm(hidden_states) |
| 208 | + |
| 209 | + logits = self.lm_head(hidden_states) |
| 210 | + |
| 211 | + return logits |
| 212 | + |
| 213 | + |
| 214 | +model = GPTModel() |
| 215 | + |
| 216 | +state_dict = torch.load('transformed.pth') |
| 217 | + |
| 218 | +missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
| 219 | +if missing_keys: |
| 220 | + print(f"Missing keys: {missing_keys}") |
| 221 | +if unexpected_keys: |
| 222 | + print(f"Unexpected keys: {unexpected_keys}") |
| 223 | + |
| 224 | +prompt = "hello how are you" |
| 225 | +tokenized = tokenizer(prompt, return_tensors="pt") |
| 226 | + |
| 227 | +with torch.no_grad(): |
| 228 | + model.eval() |
| 229 | + res = model(tokenized['input_ids']) |
| 230 | + |
| 231 | +print(res) |
| 232 | + |
| 233 | +output_ids = torch.argmax(res, dim=-1) |
| 234 | + |
| 235 | +# Decode the token indices back to text |
| 236 | +output_text = tokenizer.decode(output_ids[0]) |
| 237 | + |
| 238 | +# Print the tokens of the output |
| 239 | +print(output_text) |
0 commit comments