Skip to content

Commit f00ba4a

Browse files
committed
paper url fix
1 parent 09d0937 commit f00ba4a

File tree

318 files changed

+378
-378
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

318 files changed

+378
-378
lines changed

translate_cache/activations/fta/__init__.ja.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
{
2-
"<h1>Fuzzy Tiling Activations (FTA)</h1>\n<p><a href=\"https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb\"><span translate=no>_^_0_^_</span></a></p>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation/tutorial of <a href=\"https://papers.labml.ai/paper/1911.08068\">Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online</a>.</p>\n<p>Fuzzy tiling activations are a form of sparse activations based on binning.</p>\n<p>Binning is classification of a scalar value into a bin based on intervals. One problem with binning is that it gives zero gradients for most values (except at the boundary of bins). The other is that binning loses precision if the bin intervals are large.</p>\n<p>FTA overcomes these disadvantages. Instead of hard boundaries like in Tiling Activations, FTA uses soft boundaries between bins. This gives non-zero gradients for all or a wide range of values. And also doesn&#x27;t lose precision since it&#x27;s captured in partial values.</p>\n<h4>Tiling Activations</h4>\n<p><span translate=no>_^_1_^_</span> is the tiling vector,</p>\n<p><span translate=no>_^_2_^_</span></p>\n<p>where <span translate=no>_^_3_^_</span> is the input range, <span translate=no>_^_4_^_</span> is the bin size, and <span translate=no>_^_5_^_</span> is divisible by <span translate=no>_^_6_^_</span>.</p>\n<p>Tiling activation is,</p>\n<p><span translate=no>_^_7_^_</span></p>\n<p>where <span translate=no>_^_8_^_</span> is the indicator function which gives <span translate=no>_^_9_^_</span> if the input is positive and <span translate=no>_^_10_^_</span> otherwise.</p>\n<p>Note that tiling activation gives zero gradients because it has hard boundaries.</p>\n<h4>Fuzzy Tiling Activations</h4>\n<p>The fuzzy indicator function,</p>\n<p><span translate=no>_^_11_^_</span></p>\n<p>which increases linearly from <span translate=no>_^_12_^_</span> to <span translate=no>_^_13_^_</span> when <span translate=no>_^_14_^_</span> and is equal to <span translate=no>_^_15_^_</span> for <span translate=no>_^_16_^_</span>. <span translate=no>_^_17_^_</span> is a hyper-parameter.</p>\n<p>FTA uses this to create soft boundaries between bins.</p>\n<p><span translate=no>_^_18_^_</span></p>\n<p><a href=\"experiment.html\">Here&#x27;s a simple experiment</a> that uses FTA in a transformer.</p>\n": "<h1>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3 (FTA)</h1>\n<p><a href=\"https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb\"><span translate=no>_^_0_^_</span></a></p>\n<p>\u3053\u308c\u306f\u3001<a href=\"https://papers.labml.ai/paper/1911.08068\">\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3:\u30b9\u30d1\u30fc\u30b9\u8868\u73fe\u3092\u30aa\u30f3\u30e9\u30a4\u30f3\u3067\u5b66\u7fd2\u3059\u308b\u305f\u3081\u306e\u7c21\u5358\u306a\u30a2\u30d7\u30ed\u30fc\u30c1\u306e <a href=\"https://pytorch.org\">PyTorch</a></a> \u5b9f\u88c5/\u30c1\u30e5\u30fc\u30c8\u30ea\u30a2\u30eb\u3067\u3059\u3002</p>\n<p>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306f\u3001\u30d3\u30cb\u30f3\u30b0\u306b\u57fa\u3065\u304f\u30b9\u30d1\u30fc\u30b9\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306e\u4e00\u7a2e\u3067\u3059\u3002</p>\n<p>\u30d3\u30cb\u30f3\u30b0\u3068\u306f\u3001\u9593\u9694\u306b\u57fa\u3065\u3044\u3066\u30b9\u30ab\u30e9\u30fc\u5024\u3092\u30d3\u30f3\u306b\u5206\u985e\u3059\u308b\u3053\u3068\u3067\u3059\u3002\u30d3\u30cb\u30f3\u30b0\u306e\u554f\u984c\u306e 1 \u3064\u306f\u3001\u307b\u3068\u3093\u3069\u306e\u5024 (\u30d3\u30f3\u306e\u5883\u754c\u3092\u9664\u304f) \u3067\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u304c\u30bc\u30ed\u306b\u306a\u308b\u3053\u3068\u3067\u3059\u3002\u3082\u30461\u3064\u306f\u3001\u30d3\u30f3\u306e\u9593\u9694\u304c\u5927\u304d\u3044\u3068\u30d3\u30cb\u30f3\u30b0\u306e\u7cbe\u5ea6\u304c\u4f4e\u4e0b\u3059\u308b\u3053\u3068\u3067\u3059</p>\u3002\n<p>FTA\u306f\u3053\u308c\u3089\u306e\u6b20\u70b9\u3092\u514b\u670d\u3057\u307e\u3059\u3002FTA\u306f\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306e\u3088\u3046\u306a\u30cf\u30fc\u30c9\u30d0\u30a6\u30f3\u30c0\u30ea\u30fc\u306e\u4ee3\u308f\u308a\u306b\u3001\u30d3\u30f3\u306e\u9593\u306b\u30bd\u30d5\u30c8\u30d0\u30a6\u30f3\u30c0\u30ea\u30fc\u3092\u4f7f\u3044\u307e\u3059\u3002\u3053\u308c\u306b\u3088\u308a\u3001\u3059\u3079\u3066\u307e\u305f\u306f\u5e83\u7bc4\u56f2\u306e\u5024\u306b\u5bfe\u3057\u3066\u30bc\u30ed\u4ee5\u5916\u306e\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u304c\u5f97\u3089\u308c\u307e\u3059\u3002\u307e\u305f\u3001\u90e8\u5206\u7684\u306a\u5024\u3067\u30ad\u30e3\u30d7\u30c1\u30e3\u3055\u308c\u308b\u305f\u3081\u3001\u7cbe\u5ea6\u304c\u5931\u308f\u308c\u308b\u3053\u3068\u306f\u3042\u308a\u307e\u305b\u3093\u3002</p>\n<h4>\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3</h4>\n<p><span translate=no>_^_1_^_</span>\u306f\u30bf\u30a4\u30ea\u30f3\u30b0\u30d9\u30af\u30c8\u30eb\u3001</p>\n<p><span translate=no>_^_2_^_</span></p>\n<p>\u3053\u3053\u3067\u3001<span translate=no>_^_3_^_</span>\u306f\u5165\u529b\u7bc4\u56f2\u3001<span translate=no>_^_4_^_</span>\u306f\u30d3\u30f3\u306e\u30b5\u30a4\u30ba\u3001<span translate=no>_^_5_^_</span><span translate=no>_^_6_^_</span>\u3067\u5272\u308a\u5207\u308c\u307e\u3059\u3002</p>\n<p>\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306f\u3001</p>\n<p><span translate=no>_^_7_^_</span></p>\n<p>\u3053\u3053\u3067<span translate=no>_^_8_^_</span>\u3001\u5165\u529b\u304c\u6b63\u306e\u304b\u3069\u3046\u304b\u3092\u793a\u3059\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u95a2\u6570\u3068\u3001<span translate=no>_^_9_^_</span><span translate=no>_^_10_^_</span>\u305d\u3046\u3067\u306a\u3044\u304b\u3069\u3046\u304b\u3092\u793a\u3059\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u95a2\u6570\u304c\u3042\u308a\u307e\u3059\u3002</p>\n<p>\u30bf\u30a4\u30ea\u30f3\u30b0\u3092\u6709\u52b9\u306b\u3059\u308b\u3068\u3001\u5883\u754c\u304c\u56fa\u3044\u305f\u3081\u3001\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u306f\u30bc\u30ed\u306b\u306a\u308b\u3053\u3068\u306b\u6ce8\u610f\u3057\u3066\u304f\u3060\u3055\u3044\u3002</p>\n<h4>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3</h4>\n<p>\u30d5\u30a1\u30b8\u30fc\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u6a5f\u80fd\u3001</p>\n<p><span translate=no>_^_11_^_</span></p>\n<p><span translate=no>_^_12_^_</span><span translate=no>_^_13_^_</span>\u3053\u308c\u306f\u304b\u3089\u3044\u3064\u307e\u3067\u76f4\u7dda\u7684\u306b\u5897\u52a0\u3057\u3001<span translate=no>_^_15_^_</span> for <span translate=no>_^_14_^_</span> <span translate=no>_^_16_^_</span> \u3068\u7b49\u3057\u304f\u306a\u308a\u307e\u3059\u3002<span translate=no>_^_17_^_</span>\u30cf\u30a4\u30d1\u30fc\u30d1\u30e9\u30e1\u30fc\u30bf\u3067\u3059</p>\u3002\n<p>FTA \u306f\u3053\u308c\u3092\u4f7f\u3063\u3066\u30d3\u30f3\u306e\u9593\u306b\u30bd\u30d5\u30c8\u306a\u5883\u754c\u7dda\u3092\u4f5c\u308a\u307e\u3059\u3002</p>\n<p><span translate=no>_^_18_^_</span></p>\n<p><a href=\"experiment.html\">\u3053\u308c\u306f\u3001\u5909\u5727\u5668\u3067FTA\u3092\u4f7f\u7528\u3059\u308b\u7c21\u5358\u306a\u5b9f\u9a13\u3067\u3059</a>\u3002</p>\n",
2+
"<h1>Fuzzy Tiling Activations (FTA)</h1>\n<p><a href=\"https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb\"><span translate=no>_^_0_^_</span></a></p>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation/tutorial of <a href=\"https://arxiv.org/abs/1911.08068\">Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online</a>.</p>\n<p>Fuzzy tiling activations are a form of sparse activations based on binning.</p>\n<p>Binning is classification of a scalar value into a bin based on intervals. One problem with binning is that it gives zero gradients for most values (except at the boundary of bins). The other is that binning loses precision if the bin intervals are large.</p>\n<p>FTA overcomes these disadvantages. Instead of hard boundaries like in Tiling Activations, FTA uses soft boundaries between bins. This gives non-zero gradients for all or a wide range of values. And also doesn&#x27;t lose precision since it&#x27;s captured in partial values.</p>\n<h4>Tiling Activations</h4>\n<p><span translate=no>_^_1_^_</span> is the tiling vector,</p>\n<p><span translate=no>_^_2_^_</span></p>\n<p>where <span translate=no>_^_3_^_</span> is the input range, <span translate=no>_^_4_^_</span> is the bin size, and <span translate=no>_^_5_^_</span> is divisible by <span translate=no>_^_6_^_</span>.</p>\n<p>Tiling activation is,</p>\n<p><span translate=no>_^_7_^_</span></p>\n<p>where <span translate=no>_^_8_^_</span> is the indicator function which gives <span translate=no>_^_9_^_</span> if the input is positive and <span translate=no>_^_10_^_</span> otherwise.</p>\n<p>Note that tiling activation gives zero gradients because it has hard boundaries.</p>\n<h4>Fuzzy Tiling Activations</h4>\n<p>The fuzzy indicator function,</p>\n<p><span translate=no>_^_11_^_</span></p>\n<p>which increases linearly from <span translate=no>_^_12_^_</span> to <span translate=no>_^_13_^_</span> when <span translate=no>_^_14_^_</span> and is equal to <span translate=no>_^_15_^_</span> for <span translate=no>_^_16_^_</span>. <span translate=no>_^_17_^_</span> is a hyper-parameter.</p>\n<p>FTA uses this to create soft boundaries between bins.</p>\n<p><span translate=no>_^_18_^_</span></p>\n<p><a href=\"experiment.html\">Here&#x27;s a simple experiment</a> that uses FTA in a transformer.</p>\n": "<h1>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3 (FTA)</h1>\n<p><a href=\"https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb\"><span translate=no>_^_0_^_</span></a></p>\n<p>\u3053\u308c\u306f\u3001<a href=\"https://arxiv.org/abs/1911.08068\">\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3:\u30b9\u30d1\u30fc\u30b9\u8868\u73fe\u3092\u30aa\u30f3\u30e9\u30a4\u30f3\u3067\u5b66\u7fd2\u3059\u308b\u305f\u3081\u306e\u7c21\u5358\u306a\u30a2\u30d7\u30ed\u30fc\u30c1\u306e <a href=\"https://pytorch.org\">PyTorch</a></a> \u5b9f\u88c5/\u30c1\u30e5\u30fc\u30c8\u30ea\u30a2\u30eb\u3067\u3059\u3002</p>\n<p>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306f\u3001\u30d3\u30cb\u30f3\u30b0\u306b\u57fa\u3065\u304f\u30b9\u30d1\u30fc\u30b9\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306e\u4e00\u7a2e\u3067\u3059\u3002</p>\n<p>\u30d3\u30cb\u30f3\u30b0\u3068\u306f\u3001\u9593\u9694\u306b\u57fa\u3065\u3044\u3066\u30b9\u30ab\u30e9\u30fc\u5024\u3092\u30d3\u30f3\u306b\u5206\u985e\u3059\u308b\u3053\u3068\u3067\u3059\u3002\u30d3\u30cb\u30f3\u30b0\u306e\u554f\u984c\u306e 1 \u3064\u306f\u3001\u307b\u3068\u3093\u3069\u306e\u5024 (\u30d3\u30f3\u306e\u5883\u754c\u3092\u9664\u304f) \u3067\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u304c\u30bc\u30ed\u306b\u306a\u308b\u3053\u3068\u3067\u3059\u3002\u3082\u30461\u3064\u306f\u3001\u30d3\u30f3\u306e\u9593\u9694\u304c\u5927\u304d\u3044\u3068\u30d3\u30cb\u30f3\u30b0\u306e\u7cbe\u5ea6\u304c\u4f4e\u4e0b\u3059\u308b\u3053\u3068\u3067\u3059</p>\u3002\n<p>FTA\u306f\u3053\u308c\u3089\u306e\u6b20\u70b9\u3092\u514b\u670d\u3057\u307e\u3059\u3002FTA\u306f\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306e\u3088\u3046\u306a\u30cf\u30fc\u30c9\u30d0\u30a6\u30f3\u30c0\u30ea\u30fc\u306e\u4ee3\u308f\u308a\u306b\u3001\u30d3\u30f3\u306e\u9593\u306b\u30bd\u30d5\u30c8\u30d0\u30a6\u30f3\u30c0\u30ea\u30fc\u3092\u4f7f\u3044\u307e\u3059\u3002\u3053\u308c\u306b\u3088\u308a\u3001\u3059\u3079\u3066\u307e\u305f\u306f\u5e83\u7bc4\u56f2\u306e\u5024\u306b\u5bfe\u3057\u3066\u30bc\u30ed\u4ee5\u5916\u306e\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u304c\u5f97\u3089\u308c\u307e\u3059\u3002\u307e\u305f\u3001\u90e8\u5206\u7684\u306a\u5024\u3067\u30ad\u30e3\u30d7\u30c1\u30e3\u3055\u308c\u308b\u305f\u3081\u3001\u7cbe\u5ea6\u304c\u5931\u308f\u308c\u308b\u3053\u3068\u306f\u3042\u308a\u307e\u305b\u3093\u3002</p>\n<h4>\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3</h4>\n<p><span translate=no>_^_1_^_</span>\u306f\u30bf\u30a4\u30ea\u30f3\u30b0\u30d9\u30af\u30c8\u30eb\u3001</p>\n<p><span translate=no>_^_2_^_</span></p>\n<p>\u3053\u3053\u3067\u3001<span translate=no>_^_3_^_</span>\u306f\u5165\u529b\u7bc4\u56f2\u3001<span translate=no>_^_4_^_</span>\u306f\u30d3\u30f3\u306e\u30b5\u30a4\u30ba\u3001<span translate=no>_^_5_^_</span><span translate=no>_^_6_^_</span>\u3067\u5272\u308a\u5207\u308c\u307e\u3059\u3002</p>\n<p>\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3\u306f\u3001</p>\n<p><span translate=no>_^_7_^_</span></p>\n<p>\u3053\u3053\u3067<span translate=no>_^_8_^_</span>\u3001\u5165\u529b\u304c\u6b63\u306e\u304b\u3069\u3046\u304b\u3092\u793a\u3059\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u95a2\u6570\u3068\u3001<span translate=no>_^_9_^_</span><span translate=no>_^_10_^_</span>\u305d\u3046\u3067\u306a\u3044\u304b\u3069\u3046\u304b\u3092\u793a\u3059\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u95a2\u6570\u304c\u3042\u308a\u307e\u3059\u3002</p>\n<p>\u30bf\u30a4\u30ea\u30f3\u30b0\u3092\u6709\u52b9\u306b\u3059\u308b\u3068\u3001\u5883\u754c\u304c\u56fa\u3044\u305f\u3081\u3001\u30b0\u30e9\u30c7\u30fc\u30b7\u30e7\u30f3\u306f\u30bc\u30ed\u306b\u306a\u308b\u3053\u3068\u306b\u6ce8\u610f\u3057\u3066\u304f\u3060\u3055\u3044\u3002</p>\n<h4>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3</h4>\n<p>\u30d5\u30a1\u30b8\u30fc\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u6a5f\u80fd\u3001</p>\n<p><span translate=no>_^_11_^_</span></p>\n<p><span translate=no>_^_12_^_</span><span translate=no>_^_13_^_</span>\u3053\u308c\u306f\u304b\u3089\u3044\u3064\u307e\u3067\u76f4\u7dda\u7684\u306b\u5897\u52a0\u3057\u3001<span translate=no>_^_15_^_</span> for <span translate=no>_^_14_^_</span> <span translate=no>_^_16_^_</span> \u3068\u7b49\u3057\u304f\u306a\u308a\u307e\u3059\u3002<span translate=no>_^_17_^_</span>\u30cf\u30a4\u30d1\u30fc\u30d1\u30e9\u30e1\u30fc\u30bf\u3067\u3059</p>\u3002\n<p>FTA \u306f\u3053\u308c\u3092\u4f7f\u3063\u3066\u30d3\u30f3\u306e\u9593\u306b\u30bd\u30d5\u30c8\u306a\u5883\u754c\u7dda\u3092\u4f5c\u308a\u307e\u3059\u3002</p>\n<p><span translate=no>_^_18_^_</span></p>\n<p><a href=\"experiment.html\">\u3053\u308c\u306f\u3001\u5909\u5727\u5668\u3067FTA\u3092\u4f7f\u7528\u3059\u308b\u7c21\u5358\u306a\u5b9f\u9a13\u3067\u3059</a>\u3002</p>\n",
33
"<h3>Fuzzy Tiling Activations (FTA)</h3>\n": "<h3>\u30d5\u30a1\u30b8\u30fc\u30bf\u30a4\u30ea\u30f3\u30b0\u30a2\u30af\u30c6\u30a3\u30d9\u30fc\u30b7\u30e7\u30f3 (FTA)</h3>\n",
44
"<h4>Code to test the FTA module</h4>\n": "<h4>FTA \u30e2\u30b8\u30e5\u30fc\u30eb\u3092\u30c6\u30b9\u30c8\u3059\u308b\u30b3\u30fc\u30c9</h4>\n",
55
"<h4>Fuzzy indicator function</h4>\n<p><span translate=no>_^_0_^_</span></p>\n": "<h4>\u30d5\u30a1\u30b8\u30fc\u30a4\u30f3\u30b8\u30b1\u30fc\u30bf\u30fc\u6a5f\u80fd</h4>\n<p><span translate=no>_^_0_^_</span></p>\n",

0 commit comments

Comments
 (0)