You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+9-7Lines changed: 9 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,3 +1,5 @@
1
+
<divid="top"></div> </div>
2
+
1
3
# `Kedro` Machine Learning Pipeline 🏯
2
4
3
5
<palign="center">
@@ -25,7 +27,7 @@ The objectives were:
25
27
-**CI/CD Automation**: Implement an **automated CI/CD pipeline** using `GitHub Actions` to ensure continuous testing and code quality management.
26
28
-**Dockerization**: Develop a **Dockerized pipeline** for ease of use, incorporating `Docker volumes` for persistent data management.
27
29
28
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
30
+
<palign="right">(<ahref="#top">back to top</a>)</p>
29
31
30
32
## 🛠️ Preparation & Prototyping in Notebooks
31
33
@@ -53,7 +55,7 @@ The `Kedro Viz tool` provides an interactive canvas to visualize and **understan
53
55
54
56
With this tool, the understanding of data progression, outputs, and interactivity is greatly simplified. Kedro Viz allows users to inspect samples of data, view parameters, analyze figures, and much more, enriching the user experience with enhanced transparency and interactivity.
55
57
56
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
58
+
<palign="right">(<ahref="#top">back to top</a>)</p>
57
59
58
60
## 📜 Logging and Monitoring
59
61
@@ -65,7 +67,7 @@ Logging is integral to understanding and troubleshooting pipelines. This project
65
67
66
68
Notice how the nodes are executed sequentially, and observe the **RMSE outputs during validation** for the **XGBoost model**. Logging in Kedro is highly customizable, allowing for tailored monitoring that meets the user's specific needs.
67
69
68
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
70
+
<palign="right">(<ahref="#top">back to top</a>)</p>
69
71
70
72
## 📁 Project Structure
71
73
@@ -110,7 +112,7 @@ Kedro-Energy-Forecasting/
110
112
└── requirements.txt # Project dependencies
111
113
```
112
114
113
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
115
+
<palign="right">(<ahref="#top">back to top</a>)</p>
114
116
115
117
## 🚀 Getting Started
116
118
@@ -135,7 +137,7 @@ Here is an example of the available targets: (you type `make` in the command lin
135
137
- For **production** environments, initialize your setup by executing `make prep-doc` or using `pip install -r docker-requirements.txt` to install the production dependencies.
136
138
- For a **development** environment, where you may want to use **Kedro Viz**, work with **Jupyter notebooks**, or test everything thoroughly, run `make prep-dev` or `pip install -r dev-requirements.txt` to install all the development dependencies.
137
139
138
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
140
+
<palign="right">(<ahref="#top">back to top</a>)</p>
139
141
140
142
### 🌿 Standard Method (Conda / venv)
141
143
@@ -163,14 +165,14 @@ Prefer this method for a containerized approach, ensuring a consistent developme
163
165
164
166
For additional assistance or to explore more command options, refer to the **Makefile** or consult `kedro --help`.
165
167
166
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
168
+
<palign="right">(<ahref="#top">back to top</a>)</p>
167
169
168
170
## 🌌 Next Steps?
169
171
With our **Kedro Pipeline** 🏗 now capable of efficiently **transforming raw** data 🔄 into **trained models** 🤖, and the introduction of a Dockerized environment 🐳 for our code, the next phase involves _advancing beyond the current repository scope_ 🚀 to `orchestrate data updates automatically` using tools like **Databricks**, **Airflow**, **Azure Data Factory**... This progression allows for the seamless integration of fresh data into our models.
170
172
171
173
Moreover, implementing `experiment tracking and versioning` with **MLflow** 📊 or leveraging **Kedro Viz**'s versioning capabilities 📈 will significantly enhance our project's management and reproducibility. These steps are pivotal for maintaining a clean machine learning workflow that not only achieves our goal of simplifying model training processes 🛠 but also ensures our system remains dynamic and scalable with **minimal effort**.
172
174
173
-
<divid="top"></div> </div><palign="right">(<ahref="#top">back to top</a>)</p>
175
+
<palign="right">(<ahref="#top">back to top</a>)</p>
0 commit comments