|
5 | 5 |
|
6 | 6 | stderr = sys.stderr |
7 | 7 | sys.stderr = open(os.devnull, 'w') |
8 | | -from keras.layers import LSTM, Convolution1D, Dropout, BatchNormalization, TimeDistributed, Bidirectional, Input, merge, \ |
| 8 | +from keras.layers import LSTM, Concatenate, Convolution1D, Dropout, BatchNormalization, TimeDistributed, Bidirectional, Input, \ |
9 | 9 | Dense |
10 | 10 | from keras.regularizers import l2 |
11 | 11 | from keras.models import Model |
@@ -83,7 +83,7 @@ def PiPred_Model(): |
83 | 83 | b_b = BatchNormalization()(b) |
84 | 84 | e = Convolution1D(64, 7, activation='tanh', padding='same', kernel_regularizer=l2(0.0001))(inp1) |
85 | 85 | e_b = BatchNormalization()(e) |
86 | | - x = merge([a_b, b_b, e_b], mode='concat', concat_axis=-1) |
| 86 | + x = Concatenate()([a_b, b_b, e_b]) |
87 | 87 | t = TimeDistributed(Dense(200, activation='relu', kernel_regularizer=l2(0.0001)))(x) |
88 | 88 | k = Bidirectional(LSTM(200, return_sequences=True, activation='tanh', recurrent_activation='sigmoid', dropout=0.5, |
89 | 89 | recurrent_dropout=0.5))(t) |
|
0 commit comments