Skip to content

Commit 5e7fae9

Browse files
committed
ensured all figures where used
1 parent e412d71 commit 5e7fae9

File tree

5 files changed

+24
-35
lines changed

5 files changed

+24
-35
lines changed

DESCRIPTION.md

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,6 @@ more accessible to new users.
55

66
## Tutorials
77

8-
<p float="right">
9-
<a href="https://github.com/lammpstutorials/lammpstutorials-article">
10-
<img src="representative-image/lammps-tutorials.png" width="32%" />
11-
</a>
12-
</p>
13-
148
- Tutorial 1: Lennard-Jones fluid
159
- Tutorial 2: Pulling on a carbon nanotube
1610
- Tutorial 3: Polymer in water

README.md

Lines changed: 6 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,6 @@ more accessible to new users.
1414

1515
## Tutorials
1616

17-
<p float="right">
18-
<a href="https://github.com/lammpstutorials/lammpstutorials-article">
19-
<img src="representative-image/lammps-tutorials.png" width="32%" />
20-
</a>
21-
</p>
22-
2317
- Tutorial 1: Lennard-Jones fluid
2418
- Tutorial 2: Pulling on a carbon nanotube
2519
- Tutorial 3: Polymer in water
@@ -62,22 +56,22 @@ This project is licensed under the Creative Commons Attribution 4.0 Internationa
6256

6357
## Authors
6458

65-
- [Simon Gravelle](https://github.com/simongravelle) (corr. author),
66-
Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
59+
- [Simon Gravelle](https://github.com/simongravelle) (corresponding author),
60+
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
6761
- [Jacob R. Gissinger](https://www.stevens.edu/profile/jgissing),
68-
Stevens Institute of Technology, Hoboken, NJ 07030, USA.
62+
Stevens Institute of Technology, Hoboken, NJ 07030, USA
6963
- [Axel Kohlmeyer](https://sites.google.com/site/akohlmey),
7064
Institute for Computational Molecular Science, Temple University, Philadelphia,
71-
PA 19122, USA.
65+
PA 19122, USA
7266

7367

7468

7569
## Acknowledgements
7670

7771
- Simon Gravelle acknowledges funding from the European Union's Horizon 2020
7872
research and innovation programme under the Marie Skłodowska-Curie grant
79-
agreement 101065060.
80-
- Axel Kohlmeyer acknowledges financial support from Sandia National Laboratories
73+
agreement No 101065060.
74+
- Axel Kohlmeyer acknowledges financial support by Sandia National Laboratories
8175
under POs 2149742 and 2407526.
8276

8377

lammps-tutorials.tex

Lines changed: 16 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -433,16 +433,17 @@ \subsection{Tutorial 1: Lennard-Jones fluid}
433433
The objective of this tutorial is to perform a simple MD simulation
434434
using LAMMPS. The system consists of a Lennard-Jones fluid composed of neutral
435435
particles with two different effective diameters, contained within a
436-
cubic box with periodic boundary conditions (Fig.~\ref{fig:LJ-avarar}). In
437-
this tutorial, the temperature of the system is maintained using a
438-
Langevin thermostat~\cite{schneider1978molecular}, and basic quantities,
436+
cubic box with periodic boundary conditions (Fig.~\ref{fig:LJ-avatar}). In
437+
this tutorial, simple MD simulations in the microcanonical
438+
(NVE) and canonical (NVT) ensembles are performed, and basic quantities,
439439
including potential and kinetic energies, are calculated from the simulation.
440440

441441
\begin{figure}
442442
\centering
443443
\includegraphics[width=0.55\linewidth]{LJ-avatar}
444444
\caption{The binary mixture simulated in \hyperref[lennard-jones-label]{Tutorial 1},
445-
with the small atoms of type 1 in green and large atoms of type 2 in blue.}
445+
with the atoms of type 1 represented as small green spheres and lge atoms of type 2
446+
as large blue spheres.}
446447
\label{fig:LJ-avatar}
447448
\end{figure}
448449

@@ -1554,7 +1555,7 @@ \subsubsection{Unbreakable bonds}
15541555
Right-click inside the \guicmd{Output} window, and select
15551556
\guicmd{Export YAML data to file}. Call the output \flecmd{unbreakable.yaml}, and save
15561557
it within the same folder as the input files, where a Python script named
1557-
\href{\filepath tutorial2/yaml-reader.py}{\dwlcmd{yaml-reader.py}} should also
1558+
\href{\filepath tutorial2/unbreakable-yaml-reader.py}{\dwlcmd{unbreakable-yaml-reader.py}} should also
15581559
be located. When executed using Python, this .py file first imports
15591560
the \flecmd{unbreakable.yaml} file. Then, a certain pattern is
15601561
identified and stored as a string character named `docs'. The string is
@@ -1688,11 +1689,13 @@ \subsubsection{Breakable bonds}
16881689

16891690
Looking at the evolution of the energy, one can see that the total
16901691
energy $E_\text{tot}$ is initially increasing with the deformation. When
1691-
bonds break, the energy relaxes abruptly,
1692-
as can be seen near $t=110~\text{ps}$ and again near $t=130~\text{ps}$ in
1693-
Fig.~\ref{fig:CNT-deformed-breakable}\,a. Using the same script as previously to
1694-
import the data into Python, the stress-strain
1695-
curve can be generated, see Fig.~\ref{fig:CNT-deformed-breakable}\,b.
1692+
bonds break, the energy relaxes abruptly, as can be seen near $t=32~\text{ps}$ in Fig.~\ref{fig:CNT-breakable-energy-stress}\,a.
1693+
Using a similar script as previously,
1694+
i.e.,~\href{\filepath tutorial2/unbreakable-yaml-reader.py}{\dwlcmd{unbreakable-yaml-reader.py}},
1695+
import the data into Python and generate the stress-strain curve (Fig.~\ref{fig:CNT-breakable-energy-stress}\,b). The
1696+
stress-strain curve reveals a linear (elastic) regime where $F_\text{cnt} \propto \Delta L_\text{cnt}$
1697+
for $\Delta L_\text{cnt} < 5\,\%$, and a non-linear (plastic) regime
1698+
for $5\,\% < \Delta L_\text{cnt} < 25\,\%$.
16961699

16971700
\begin{figure}
16981701
\centering
@@ -1932,7 +1935,7 @@ \subsubsection{Solvating the PEG in water}
19321935
to the water. The PEG molecule topology was downloaded from the ATB repository
19331936
\cite{malde2011automated, oostenbrink2004biomolecular}. It has a formula
19341937
$\text{C}_{16}\text{H}_{34}\text{O}_{9}$, and the parameters are taken from
1935-
the GROMOS 54A7 force field~\cite{schmid2011definition}.
1938+
the GROMOS 54A7 force field~\cite{schmid2011definition} (Fig.~\ref{fig:PEG-in-vacuum}).
19361939

19371940
\begin{figure}
19381941
\centering
@@ -3716,10 +3719,8 @@ \subsubsection{Method 1: Free sampling}
37163719
run 50000
37173720
\end{lstlisting}
37183721
Run the simulation with LAMMPS. The number of atoms in the
3719-
central region, $n_\mathrm{center}$, reaches
3720-
its equilibrium value after approximately $40\,\text{ps}$
3721-
(Fig.~\ref{fig:US-density-evolution}). A snapshot of the
3722-
equilibrated system is shown in Fig.~\ref{fig:US-system-unbiased}.
3722+
central region, $n_\mathrm{center}$, reaches its equilibrium value after approximately $40\,\text{ps}$
3723+
(Fig.~\ref{fig:US-density-evolution}). A snapshot of the equilibrated system is shown in Fig.~\ref{fig:US-system-unbiased}.
37233724

37243725
\paragraph{Run and data acquisition}
37253726

0 commit comments

Comments
 (0)