@@ -1872,7 +1872,7 @@ \subsubsection{Preparing the water reservoir}
18721872Let us output the system into images by adding the following commands to \flecmd {water.lmp}:
18731873\ begin{lstlisting}
18741874dump viz all image 250 myimage-*.ppm type type &
1875- shiny 0.1 box no 0.01 view 0 90 zoom 3 size 1000 500
1875+ shiny 0.1 box no 0.01 view 0 90 zoom 3 size 1000 600
18761876dump_modify viz backcolor white &
18771877 acolor OW red acolor HW white &
18781878 adiam OW 3 adiam HW 1.5
@@ -1888,11 +1888,12 @@ \subsubsection{Preparing the water reservoir}
18881888thermo 500
18891889thermo_style custom step temp etotal v_myvol v_rho
18901890\end {lstlisting }
1891- The variable \lmpcmd {myoxy} represents the number of atoms divided by 3 ($ N_\text {oxy}$ ),
1892- which corresponds to the number of molecules, and the variable \lmpcmd {myrho} is
1893- the density in kg/mol:
1891+ Here, several variables are defined and used for converting the units of the
1892+ density in kg/mol: The variable \lmpcmd {myoxy} represents the number of
1893+ atoms divided by 3, which corresponds to the number of molecules, $ N_\text {H2O}$ ,
1894+ and the variable \lmpcmd {myrho} is the density in kg/mol:
18941895\begin {equation }
1895- \rho = \dfrac {N_\text {oxy }}{V N_\text {A}},
1896+ \rho = \dfrac {N_\text {H2O }}{V N_\text {A}},
18961897\end {equation }
18971898where $ V$ is the volume in m$ ^3 $ , $ N_\text {A}$ the Avogadro number, and
18981899$ M = 0.018 $ \, kg/mol the molar mass of water.
@@ -1946,10 +1947,9 @@ \subsubsection{Solvating the PEG in water}
19461947
19471948\begin {figure }
19481949\centering
1949- \includegraphics [width=0.45 \linewidth ]{PEG-in-vacuum}
1950+ \includegraphics [width=0.8 \linewidth ]{PEG-in-vacuum}
19501951\caption {The PEG molecule from \hyperref [all-atom-label]{Tutorial 3}.
1951- The carbon atoms are in gray, the oxygen
1952- atoms in red, and the hydrogen atoms in white.}
1952+ The carbon atoms are in gray, the oxygen atoms in red, and the hydrogen atoms in white.}
19531953\label {fig:PEG-in-vacuum }
19541954\end {figure }
19551955
@@ -1975,7 +1975,7 @@ \subsubsection{Solvating the PEG in water}
19751975let us create a single molecule in the middle of the box by adding the following
19761976commands to \flecmd {merge.lmp}:
19771977\ begin{lstlisting}
1978- molecule pegmol mol .mol
1978+ molecule pegmol peg .mol
19791979create_atoms 0 single 0 0 0 mol pegmol 454756
19801980\end {lstlisting }
19811981Let us create a group for the atoms of the PEG (the previously created
@@ -2011,7 +2011,7 @@ \subsubsection{Solvating the PEG in water}
20112011\ begin{lstlisting}
20122012dump viz all image 250 myimage-*.ppm type &
20132013 type shiny 0.1 box no 0.01 &
2014- view 0 90 zoom 3 fsaa yes bond atom 0.8 size 1000 500
2014+ view 0 90 zoom 3.3 fsaa yes bond atom 0.8 size 1100 600
20152015dump_modify viz backcolor white &
20162016 acolor OW red acolor HW white &
20172017 acolor OE darkred acolor OAlc darkred &
@@ -2028,7 +2028,7 @@ \subsubsection{Solvating the PEG in water}
20282028timestep 1.0
20292029run 10000
20302030
2031- write_restart mix .restart
2031+ write_restart merge .restart
20322032\end {lstlisting }
20332033Run the simulation using LAMMPS. From the outputs, you can make
20342034sure that the temperature remains close to the
@@ -2077,7 +2077,7 @@ \subsubsection{Stretching the PEG molecule}
20772077\ begin{lstlisting}
20782078dump viz all image 250 myimage-*.ppm type &
20792079 type shiny 0.1 box no 0.01 &
2080- view 0 90 zoom 3 fsaa yes bond atom 0.8 size 1000 500
2080+ view 0 90 zoom 3.3 fsaa yes bond atom 0.8 size 1100 600
20812081dump_modify viz backcolor white &
20822082 acolor OW red acolor HW white &
20832083 acolor OE darkred acolor OAlc darkred &
@@ -2139,7 +2139,7 @@ \subsubsection{Stretching the PEG molecule}
21392139(Fig.~\ref {fig:PEG-distance }\, a). Additionally, from the values of the dihedral angles
21402140printed in the \flecmd {pull.dat} file, you can create a histogram
21412141of dihedral angles for a specific type. For example, the angle $ \phi $ for dihedrals
2142- of type 1 (C-C-OE-C) is shown in Fig.~\ref {fig:PEG-distance }\, b. % SG: is it type 1 or 2?
2142+ of type 1 (C-C-OE-C) is shown in Fig.~\ref {fig:PEG-distance }\, b.
21432143
21442144\begin {figure }
21452145\centering
@@ -2155,8 +2155,8 @@ \subsubsection{Stretching the PEG molecule}
21552155\caption {a) Evolution of
21562156the radius of gyration $ R_\text {gyr}$ of the PEG molecule
21572157from \hyperref [all-atom-label]{Tutorial 3}, with the force
2158- applied starting at $ t = 15 \, \text {ps}$ . b) Histograms of the dihedral angles of type 2
2159- in the absence (orange) and in the presence (blue) of the applied force.} % SG: is it type 1 or 2?
2158+ applied starting at $ t = 15 \, \text {ps}$ . b) Histograms of the dihedral angles of type 1
2159+ in the absence (orange) and in the presence (blue) of the applied force.}
21602160\label {fig:PEG-distance }
21612161\end {figure }
21622162
0 commit comments