Skip to content

Commit ec4cac5

Browse files
Merge pull request #46 from lammpstutorials/continue-improving
Further cleaning of the tutorials
2 parents eec0574 + c5f53da commit ec4cac5

File tree

1 file changed

+48
-49
lines changed

1 file changed

+48
-49
lines changed

lammps-tutorials.tex

Lines changed: 48 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -1664,7 +1664,7 @@ \subsubsection{Breakable bonds}
16641664

16651665
After equilibration, let us set the velocity of the edges equal to
16661666
$75~\text{m/s}$ (or $0.75~\text{\AA{}/ps}$) and run for a longer duration than
1667-
previously. Add the following lines into \flecmd{breakable.lmp}:
1667+
previously. Add the following lines into \flecmd{breakable.lmp}:
16681668
\begin{lstlisting}
16691669
velocity cnt_top set 0.75 0 0
16701670
velocity cnt_bot set -0.75 0 0
@@ -1942,7 +1942,7 @@ \subsubsection{Solvating the PEG in water}
19421942
\end{figure}
19431943

19441944
Open the file named \flecmd{merge.lmp} that was downloaded
1945-
alongside \flecmd{water.lmp} during the tutorial setup. It only contain one line:
1945+
alongside \flecmd{water.lmp} during the tutorial setup. It only contain one line:
19461946
\begin{lstlisting}
19471947
read_restart water.restart
19481948
\end{lstlisting}
@@ -2197,7 +2197,7 @@ \subsubsection{System preparation}
21972197
kspace_modify slab 3.0
21982198
\end{lstlisting}
21992199
These lines are used to define the most basic parameters, including the
2200-
\lmpcmd{atom}, \lmpcmd{bond}, and \lmpcmd{angle} styles, as well as interaction
2200+
atom, bond, and angle styles, as well as interaction
22012201
potential. Here, \lmpcmd{lj/cut/tip4p/long} imposes a Lennard-Jones potential with
22022202
a cut-off at $12\,\text{$\text{\AA{}}$}$ and a long-range Coulomb potential.
22032203

@@ -2236,12 +2236,11 @@ \subsubsection{System preparation}
22362236
factor of 4.04, the region box extends from $-12.12~\text{\AA{}}$ to $12.12~\text{\AA{}}$
22372237
along the $x$ direction. The \lmpcmd{create\_box} command creates a simulation box with
22382238
5 types of atoms: the oxygen and hydrogen of the water molecules, the two ions ($\text{Na}^+$,
2239-
$\text{Cl}^-$), and the atom of the walls. The \lmpcmd{create\_box} command extends over 6
2240-
lines thanks to the $\&$ character. The second and third lines are used to indicate that the
2241-
simulation contains 1 type of bond and 1 type of angle (both required by the water molecule).
2242-
The parameters for these bond and angle constraints will be given later. The three last
2243-
lines are for memory allocation. The \lmpcmd{labelmap} command assigns alphanumeric type labels
2244-
to each numeric atom type, bond type, and angle type.
2239+
$\text{Cl}^-$), and the atoms from the walls. The simulation contains 1 type of bond
2240+
and 1 type of angle (both required by the water molecules).
2241+
The parameters for these bond and angle constraints will be given later. The \lmpcmd{extra/ (...)}
2242+
keywords are for memory allocation. Finally, the \lmpcmd{labelmap} commands assign
2243+
alphanumeric type labels to each numeric atom type, bond type, and angle type.
22452244

22462245
Now, we can add atoms to the system. First, let us create two sub-regions corresponding
22472246
respectively to the two solid walls, and create a larger region from the union of the
@@ -2258,7 +2257,7 @@ \subsubsection{System preparation}
22582257

22592258
To add the water molecules, the molecule
22602259
template called \href{\filepath tutorial4/water.mol}{\dwlcmd{water.mol}}
2261-
must be located next to \flecmd{}. The template contains all the
2260+
must be located next to \flecmd{create.lmp}. The template contains all the
22622261
necessary information concerning the water molecule, such as atom positions,
22632262
bonds, and angles. Add the following lines to \flecmd{create.lmp}:
22642263
\begin{lstlisting}
@@ -2419,7 +2418,7 @@ \subsubsection{System preparation}
24192418

24202419
Let us move the atoms and place them in more energetically favorable positions
24212420
before starting the actual molecular dynamics simulation. Although we refer to this step as
2422-
\emph{energy minimization}, it is not a conventional \emph{minimization}
2421+
\emph{energy minimization}, it is not a conventional minimization
24232422
like that performed in the first tutorial; \hyperref[lennard-jones-label]{Lennard-Jones fluid}.
24242423
Instead, we will conduct a molecular dynamics simulation, employing certain techniques
24252424
to prevent the system from exploding due to overlapping atoms.
@@ -2597,9 +2596,10 @@ \subsubsection{System preparation}
25972596

25982597
write_data equilibrate.data nocoeff
25992598
\end{lstlisting}
2600-
Run the \flecmd{input.lmp} file using LAMMPS. As seen from the values of
2601-
\lmpcmd{deltaz}, the distance between the two walls reaches
2602-
an equilibrium value (Fig.~\ref{fig:NANOSHEAR-equilibration}).
2599+
Run the \flecmd{input.lmp} file using LAMMPS. Both the pressure and the distance
2600+
between the two walls show oscillations at the start of the simulation
2601+
but eventually stabilize at their equilibrium values toward
2602+
the end of the simulation (Fig.~\ref{fig:NANOSHEAR-equilibration}).
26032603

26042604
\begin{note}
26052605
Note that it is generally recommended to run a longer equilibration. In this case,
@@ -2737,7 +2737,7 @@ \subsubsection{Imposed shearing}
27372737
\end{figure}
27382738

27392739
From the force applied by the fluid on the solid, one can extract the stress
2740-
within the fluid, which enables the measurement of its viscosity $\dot{\eta}$
2740+
within the fluid, which enables the measurement of its viscosity $\eta$
27412741
according to $\eta = \tau / \dot{\gamma}$ where $\tau$ is the stress applied by
27422742
the fluid on the shearing wall, and $\dot{\gamma}$ the shear rate
27432743
\cite{gravelle2021violations}. Here, the shear rate is
@@ -2771,15 +2771,15 @@ \subsection{Tutorial 5: Reactive silicon dioxide}
27712771
can be used to calculate the partial charges of a system undergoing deformation, as well as
27722772
the formation and breaking of chemical bonds~\cite{van2001reaxff, zou2012investigation}.
27732773
The system simulated in this tutorial is a block of silicon dioxide $\text{SiO}_2$ (Fig.~\ref{fig:SIO})
2774-
which is deformed until it ruptures. Particular attention is paid to the evolution
2775-
of atomic charges during the deformation of the structure, with chemical reactions
2776-
resulting from the deformation being tracked over time.
2774+
which is deformed until it ruptures. Particular attention is given to the evolution
2775+
of atomic charges during deformation, with a focus on tracking chemical reactions
2776+
resulting from the deformation over time.
27772777

27782778
\subsubsection{Prepare and relax}
27792779

2780-
The first action we need to perform here is to relax the structure with ReaxFF,
2781-
which we are gonna do using molecular dynamics. As always, to make sure that the system
2782-
equilibrates nicely, we will us track certain parameters over time. To set up this
2780+
The first step is to relax the structure with ReaxFF, which which will be achieved using
2781+
molecular dynamics. To ensure the system equilibrates properly, we will monitor certain
2782+
parameters over time, such as the system volume. To set up this
27832783
tutorial, select \guicmd{Start Tutorial 5} from the
27842784
\guicmd{Tutorials} menu of \lammpsgui{} and follow the instructions.
27852785
The editor should display the following content corresponding to \flecmd{relax.lmp}:
@@ -2957,7 +2957,7 @@ \subsubsection{Deform the structure}
29572957
fix mynvt all nvt temp 300.0 300.0 100
29582958
timestep 0.5
29592959
\end{lstlisting}
2960-
Here, a barostat is not used because the change in the box volume will be imposed
2960+
Here, no barostat is used because the change in the box volume will be imposed
29612961
by the \lmpcmd{fix deform}.
29622962

29632963
\begin{figure}
@@ -3084,9 +3084,10 @@ \subsubsection{Decorate the surface}
30843084
backcolor white amap -1 2 ca 0.0 3 min royalblue &
30853085
0 green max orangered
30863086

3087-
fix myspec all reaxff/species 5 1 5 decorate.species element Si O H
3087+
fix myspec all reaxff/species 5 1 5 decorate.species &
3088+
element Si O H
30883089
\end{lstlisting}
3089-
Here, the $+1\text{e}-10$ was added to the denominator of the \lmpcmd{variable qH}
3090+
Here, the $+1 \mathrm{e}{-10}$ was added to the denominator of the \lmpcmd{variable qH}
30903091
to avoid dividing by 0 at the beginning of the simulation. Finally, let us
30913092
create a loop with 10 steps, and create two hydrogen atoms at random locations at
30923093
every step:
@@ -3491,7 +3492,7 @@ \subsubsection{Adding water}
34913492
with time. The \lmpcmd{compute\_modify} command with the \lmpcmd{dynamic yes}
34923493
option for water is used to specify that the number of molecules will not be constant.
34933494

3494-
Finally, let us use the \textit{fix gcmc} and perform the grand canonical Monte
3495+
Finally, let us use the \lmpcmd{fix gcmc} and perform the grand canonical Monte
34953496
Carlo steps. Add the following lines into \flecmd{gcmc.lmp}:
34963497
\begin{lstlisting}
34973498
variable tfac equal 5.0/3.0
@@ -3504,12 +3505,10 @@ \subsubsection{Adding water}
35043505
freedom. Here, 100 insertion and deletion attemps are made every 100 steps.
35053506

35063507
\begin{note}
3507-
At a pressure of $p = 100\ \text{bar}$, the chemical potential of water
3508-
vapor at $T = 300\ \text{K}$ can be calculated using as
3509-
$\mu = \mu^\circ + RT \ln (\frac{p}{p_0}),$
3510-
where $\mu_0$ is the standard chemical potential
3511-
at $p^\circ = 1 \, \text{bar}$, \(R = 8.314\ \text{J/mol·K}\) is
3512-
the gas constant, \(T = 300\ \text{K}\) is the temperature.
3508+
At a pressure of $p = 100\ \text{bar}$, the chemical potential of water vapor at $T = 300\ \text{K}$
3509+
can be calculated using as $\mu = \mu_0 + RT \ln (\frac{p}{p_0}),$ where $\mu_0$ is the standard
3510+
chemical potential (typically taken at a pressure $p_0 = 1 \, \text{bar}$), \(R = 8.314\ \text{J/mol·K}\)
3511+
is the gas constant, \(T = 300\ \text{K}\) is the temperature.
35133512
\end{note}
35143513

35153514
Finally, let us print some information and run for 25\,ps:
@@ -3616,7 +3615,7 @@ \subsubsection{Method 1: Free sampling}
36163615
to create a Weeks-Chandler-Andersen (WCA) potential, which is a truncated and
36173616
purely repulsive LJ potential~\cite{weeks1971role}. It was calculated
36183617
as $2^{1/6} \sigma$. The potential is also shifted to be
3619-
equal to 0 at the cut-off using the \lmpcmd{pair\_modify}. The system of unit
3618+
equal to 0 at the cut-off using the \lmpcmd{pair\_modify} command. The system of unit
36203619
\lmpcmd{real}, in which energy is in kcal/mol, distance in Ångstrom, or time in
36213620
femtosecond, has been chosen for practical reasons: the WHAM algorithm used in
36223621
the second part of the tutorial automatically assumes the energy to be in kcal/mol.
@@ -3964,6 +3963,14 @@ \subsubsection{Method 2: Umbrella sampling}
39643963
\subsection{Tutorial 8: Reactive Molecular Dynamics}
39653964
\label{bond-react-label}
39663965

3966+
The goal of this tutorial is to create a model of a carbon nanotube (CNT) embedded
3967+
in a polymer melt made of polystyrene (PS) (Fig.~\ref{fig:REACT}). The
3968+
REACTER protocol is used to simulate the polymerization of styrene monomers, and the
3969+
polymerization reaction is followed in time \cite{gissinger2017polymer, gissinger2020reacter, gissinger2024molecular}.
3970+
In contrast with AIREBO (\hyperref[carbon-nanotube-label]{Tutorial 2})
3971+
and ReaxFF (\hyperref[reactive-silicon-dioxide-label]{Tutorial 5}), the REACTER
3972+
protocol relies on the use of a \textit{classical} force field.
3973+
39673974
\begin{figure}
39683975
\centering
39693976
\includegraphics[width=0.7\linewidth]{REACT.png}
@@ -3973,14 +3980,6 @@ \subsection{Tutorial 8: Reactive Molecular Dynamics}
39733980
\label{fig:REACT}
39743981
\end{figure}
39753982

3976-
The goal of this tutorial is to create a model of a carbon nanotube (CNT) embedded
3977-
in a polymer melt made of polystyrene (PS) (Fig.~\ref{fig:REACT}). The
3978-
REACTER protocol is used to simulate the polymerization of styrene monomers, and the
3979-
polymerization reaction is followed in time \cite{gissinger2017polymer, gissinger2020reacter, gissinger2024molecular}.
3980-
In contrast with AIREBO (\hyperref[carbon-nanotube-label]{Tutorial 2})
3981-
and ReaxFF (\hyperref[reactive-silicon-dioxide-label]{Tutorial 5}), the REACTER
3982-
protocol relies on the use of a \textit{classical} force field.
3983-
39843983
\subsubsection{Creating the system}
39853984

39863985
To begin this tutorial, select \guicmd{Start Tutorial 8} from the
@@ -4121,21 +4120,21 @@ \subsubsection{Reaction templates}
41214120
The first reaction uses the prefix `M-M' for the pre-reaction template,
41224121
post-reaction template, and reaction map file:
41234122
\begin{itemize}
4124-
\item \href{\filepath tutorial8/M-M_pre.mol}{\textit{M-M$\_$pre.mol}},
4125-
\item \href{\filepath tutorial8/M-M_post.mol}{\textit{M-M$\_$post.mol}},
4126-
\item \href{\filepath tutorial8/M-M.rxnmap}{\textit{M-M.rxnmap}}.
4123+
\item \href{\filepath tutorial8/M-M_pre.mol}{\dwlcmd{M-M$\_$pre.mol}},
4124+
\item \href{\filepath tutorial8/M-M_post.mol}{\dwlcmd{M-M$\_$post.mol}},
4125+
\item \href{\filepath tutorial8/M-M.rxnmap}{\dwlcmd{M-M.rxnmap}}.
41274126
\end{itemize}
41284127
The second reaction uses the prefix `M-P',
41294128
\begin{itemize}
4130-
\item \href{\filepath tutorial8/M-P_pre.lmpmol}{\textit{M-P$\_$pre.mol}},
4131-
\item \href{\filepath tutorial8/M-P_post.lmpmol}{\textit{M-P$\_$post.mol}},
4132-
\item \href{\filepath tutorial8/M-P.rxnmap}{\textit{M-P.rxnmap}}.
4129+
\item \href{\filepath tutorial8/M-P_pre.lmpmol}{\dwlcmd{M-P$\_$pre.mol}},
4130+
\item \href{\filepath tutorial8/M-P_post.lmpmol}{\dwlcmd{M-P$\_$post.mol}},
4131+
\item \href{\filepath tutorial8/M-P.rxnmap}{\dwlcmd{M-P.rxnmap}}.
41334132
\end{itemize}
41344133
The third reaction uses the prefix `P-P',
41354134
\begin{itemize}
4136-
\item \href{\filepath tutorial8/P-P_pre.lmpmol}{\textit{P-P$\_$pre.mol}},
4137-
\item \href{\filepath tutorial8/P-P_post.lmpmol}{\textit{P-P$\_$post.mol}},
4138-
\item \href{\filepath tutorial8/P-P.rxnmap}{\textit{P-P.rxnmap}}.
4135+
\item \href{\filepath tutorial8/P-P_pre.lmpmol}{\dwlcmd{P-P$\_$pre.mol}},
4136+
\item \href{\filepath tutorial8/P-P_post.lmpmol}{\dwlcmd{P-P$\_$post.mol}},
4137+
\item \href{\filepath tutorial8/P-P.rxnmap}{\dwlcmd{P-P.rxnmap}}.
41394138
\end{itemize}
41404139
Here, the file names for each reaction use the abbreviation `M' for monomer and `P'
41414140
for polymer.

0 commit comments

Comments
 (0)