@@ -169,7 +169,7 @@ Use the `SQLDatabase` wrapper available in the `langchain_community` package to
169169``` python
170170from langchain_community.agent_toolkits import SQLDatabaseToolkit
171171
172- toolkit = SQLDatabaseToolkit(db = db, llm = llm )
172+ toolkit = SQLDatabaseToolkit(db = db, llm = model )
173173
174174tools = toolkit.get_tools()
175175
@@ -304,7 +304,7 @@ def list_tables(state: MessagesState):
304304def call_get_schema (state : MessagesState):
305305 # Note that LangChain enforces that all models accept `tool_choice="any"`
306306 # as well as `tool_choice=<string name of tool>`.
307- llm_with_tools = llm .bind_tools([get_schema_tool], tool_choice = " any" )
307+ llm_with_tools = model .bind_tools([get_schema_tool], tool_choice = " any" )
308308 response = llm_with_tools.invoke(state[" messages" ])
309309
310310 return {" messages" : [response]}
@@ -335,7 +335,7 @@ def generate_query(state: MessagesState):
335335 }
336336 # We do not force a tool call here, to allow the model to
337337 # respond naturally when it obtains the solution.
338- llm_with_tools = llm .bind_tools([run_query_tool])
338+ llm_with_tools = model .bind_tools([run_query_tool])
339339 response = llm_with_tools.invoke([system_message] + state[" messages" ])
340340
341341 return {" messages" : [response]}
@@ -369,7 +369,7 @@ def check_query(state: MessagesState):
369369 # Generate an artificial user message to check
370370 tool_call = state[" messages" ][- 1 ].tool_calls[0 ]
371371 user_message = {" role" : " user" , " content" : tool_call[" args" ][" query" ]}
372- llm_with_tools = llm .bind_tools([run_query_tool], tool_choice = " any" )
372+ llm_with_tools = model .bind_tools([run_query_tool], tool_choice = " any" )
373373 response = llm_with_tools.invoke([system_message, user_message])
374374 response.id = state[" messages" ][- 1 ].id
375375
@@ -407,7 +407,7 @@ async function listTables(state: typeof MessagesAnnotation.State) {
407407
408408// Example: force a model to create a tool call
409409async function callGetSchema(state : typeof MessagesAnnotation .State ) {
410- const llmWithTools = llm .bindTools ([getSchemaTool ], {
410+ const llmWithTools = model .bindTools ([getSchemaTool ], {
411411 tool_choice: " any" ,
412412 });
413413 const response = await llmWithTools .invoke (state .messages );
@@ -435,7 +435,7 @@ async function generateQuery(state: typeof MessagesAnnotation.State) {
435435 const systemMessage = new SystemMessage (generateQuerySystemPrompt );
436436 // We do not force a tool call here, to allow the model to
437437 // respond naturally when it obtains the solution.
438- const llmWithTools = llm .bindTools ([queryTool ]);
438+ const llmWithTools = model .bindTools ([queryTool ]);
439439 const response = await llmWithTools .invoke ([systemMessage , ... state .messages ]);
440440
441441 return { messages: [response ] };
@@ -469,7 +469,7 @@ async function checkQuery(state: typeof MessagesAnnotation.State) {
469469 }
470470 const toolCall = lastMessage .tool_calls [0 ];
471471 const userMessage = new HumanMessage (toolCall .args .query );
472- const llmWithTools = llm .bindTools ([queryTool ], {
472+ const llmWithTools = model .bindTools ([queryTool ], {
473473 tool_choice: " any" ,
474474 });
475475 const response = await llmWithTools .invoke ([systemMessage , userMessage ]);
0 commit comments