|
| 1 | +from typing import ( |
| 2 | + Any, |
| 3 | + Iterator, |
| 4 | + List, |
| 5 | + Optional, |
| 6 | + Sequence, |
| 7 | + Union, |
| 8 | + Dict, |
| 9 | + Callable, |
| 10 | + Literal, |
| 11 | + Type, |
| 12 | + TypeVar, |
| 13 | + Tuple, |
| 14 | + cast, |
| 15 | +) |
| 16 | + |
| 17 | +from langchain_core.language_models import BaseChatModel, LanguageModelInput |
| 18 | +from langchain_core.callbacks import CallbackManagerForLLMRun |
| 19 | +from langchain_core.messages import ( |
| 20 | + BaseMessage, |
| 21 | + AIMessage, |
| 22 | + AIMessageChunk, |
| 23 | + HumanMessage, |
| 24 | + SystemMessage, |
| 25 | + ToolMessage, |
| 26 | + ChatMessage, |
| 27 | +) |
| 28 | +from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult |
| 29 | +from langchain_core.runnables import Runnable |
| 30 | +from langchain_core.tools import BaseTool |
| 31 | +from langchain_core.utils.pydantic import TypeBaseModel |
| 32 | +from pydantic import BaseModel |
| 33 | + |
| 34 | +from abc import ABC, abstractmethod |
| 35 | +import re |
| 36 | + |
| 37 | +# ModelAdapter might also need access to the data that the wrapper ChatModel class has |
| 38 | +# for example, the provider or custom inputs passed in by the user |
| 39 | + |
| 40 | + |
| 41 | +class ModelAdapter(ABC): |
| 42 | + """Abstract base class for model-specific adaptation strategies""" |
| 43 | + |
| 44 | + @abstractmethod |
| 45 | + def convert_messages_to_payload( |
| 46 | + self, |
| 47 | + messages: List[BaseMessage], |
| 48 | + stop: Optional[List[str]] = None, |
| 49 | + **kwargs: Any, |
| 50 | + ) -> Any: |
| 51 | + """Convert LangChain messages to model-specific payload""" |
| 52 | + pass |
| 53 | + |
| 54 | + @abstractmethod |
| 55 | + def convert_response_to_chat_result(self, response: Any) -> ChatResult: |
| 56 | + """Convert model-specific response to LangChain ChatResult""" |
| 57 | + pass |
| 58 | + |
| 59 | + @abstractmethod |
| 60 | + def convert_stream_response_to_chunks( |
| 61 | + self, response: Any |
| 62 | + ) -> Iterator[ChatGenerationChunk]: |
| 63 | + """Convert model-specific stream response to LangChain chunks""" |
| 64 | + pass |
| 65 | + |
| 66 | + @abstractmethod |
| 67 | + def format_tools( |
| 68 | + self, tools: Sequence[Union[Dict[str, Any], TypeBaseModel, Callable, BaseTool]] |
| 69 | + ) -> Any: |
| 70 | + """Format tools for the specific model""" |
| 71 | + pass |
| 72 | + |
| 73 | + |
| 74 | +# Example concrete implementation for a specific model |
| 75 | +class BedrockClaudeAdapter(ModelAdapter): |
| 76 | + message_type_lookups = { |
| 77 | + "human": "user", |
| 78 | + "ai": "assistant", |
| 79 | + "AIMessageChunk": "assistant", |
| 80 | + "HumanMessageChunk": "user", |
| 81 | + } |
| 82 | + |
| 83 | + def convert_messages_to_payload( |
| 84 | + self, |
| 85 | + messages: List[BaseMessage], |
| 86 | + stop: Optional[List[str]] = None, |
| 87 | + **kwargs: Any, |
| 88 | + ) -> Dict[str, Any]: |
| 89 | + # Specific implementation for converting LC messages to Claude payload |
| 90 | + response_msg_with_provider = { |
| 91 | + "messages": [self._convert_message(msg) for msg in messages], |
| 92 | + "max_tokens": kwargs.get("max_tokens", 1000), |
| 93 | + "stop_sequences": stop or [], |
| 94 | + } |
| 95 | + return self.convert_messages_to_prompt_anthropic(messages=messages) |
| 96 | + |
| 97 | + def _convert_message(self, msg: BaseMessage) -> Dict[str, str]: |
| 98 | + # Convert LangChain message to Claude-specific format |
| 99 | + role_map = {"human": "user", "ai": "assistant", "system": "system"} |
| 100 | + return { |
| 101 | + "role": role_map.get(msg.type, "user"), |
| 102 | + # This is just a string. A dict is expected with "type" and "text" fields |
| 103 | + "content": msg.content, |
| 104 | + } |
| 105 | + |
| 106 | + def convert_response_to_chat_result(self, response: Any) -> ChatResult: |
| 107 | + pass |
| 108 | + |
| 109 | + def convert_stream_response_to_chunks( |
| 110 | + self, response: Any |
| 111 | + ) -> Iterator[ChatGenerationChunk]: |
| 112 | + """Convert model-specific stream response to LangChain chunks""" |
| 113 | + pass |
| 114 | + |
| 115 | + def format_tools( |
| 116 | + self, tools: Sequence[Union[Dict[str, Any], TypeBaseModel, Callable, BaseTool]] |
| 117 | + ) -> Any: |
| 118 | + """Format tools for the specific model""" |
| 119 | + pass |
| 120 | + |
| 121 | + def _format_image(self, image_url: str) -> Dict: |
| 122 | + """ |
| 123 | + Formats an image of format data:image/jpeg;base64,{b64_string} |
| 124 | + to a dict for anthropic api |
| 125 | +
|
| 126 | + { |
| 127 | + "type": "base64", |
| 128 | + "media_type": "image/jpeg", |
| 129 | + "data": "/9j/4AAQSkZJRg...", |
| 130 | + } |
| 131 | +
|
| 132 | + And throws an error if it's not a b64 image |
| 133 | + """ |
| 134 | + regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$" |
| 135 | + match = re.match(regex, image_url) |
| 136 | + if match is None: |
| 137 | + raise ValueError( |
| 138 | + "Anthropic only supports base64-encoded images currently." |
| 139 | + " Example: data:image/png;base64,'/9j/4AAQSk'..." |
| 140 | + ) |
| 141 | + return { |
| 142 | + "type": "base64", |
| 143 | + "media_type": match.group("media_type"), |
| 144 | + "data": match.group("data"), |
| 145 | + } |
| 146 | + |
| 147 | + def _merge_messages( |
| 148 | + self, |
| 149 | + messages: Sequence[BaseMessage], |
| 150 | + ) -> List[Union[SystemMessage, AIMessage, HumanMessage]]: |
| 151 | + """Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501 |
| 152 | + merged: list = [] |
| 153 | + for curr in messages: |
| 154 | + curr = curr.model_copy(deep=True) |
| 155 | + if isinstance(curr, ToolMessage): |
| 156 | + if isinstance(curr.content, list) and all( |
| 157 | + isinstance(block, dict) and block.get("type") == "tool_result" |
| 158 | + for block in curr.content |
| 159 | + ): |
| 160 | + curr = HumanMessage(curr.content) # type: ignore[misc] |
| 161 | + else: |
| 162 | + curr = HumanMessage( # type: ignore[misc] |
| 163 | + [ |
| 164 | + { |
| 165 | + "type": "tool_result", |
| 166 | + "content": curr.content, |
| 167 | + "tool_use_id": curr.tool_call_id, |
| 168 | + } |
| 169 | + ] |
| 170 | + ) |
| 171 | + last = merged[-1] if merged else None |
| 172 | + if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage): |
| 173 | + if isinstance(last.content, str): |
| 174 | + new_content: List = [{"type": "text", "text": last.content}] |
| 175 | + else: |
| 176 | + new_content = last.content |
| 177 | + if isinstance(curr.content, str): |
| 178 | + new_content.append({"type": "text", "text": curr.content}) |
| 179 | + else: |
| 180 | + new_content.extend(curr.content) |
| 181 | + last.content = new_content |
| 182 | + else: |
| 183 | + merged.append(curr) |
| 184 | + return merged |
| 185 | + |
| 186 | + def format_anthropic_messages( |
| 187 | + self, |
| 188 | + messages: List[BaseMessage], |
| 189 | + ) -> Tuple[Optional[str], List[Dict]]: |
| 190 | + """Format messages for anthropic.""" |
| 191 | + system: Optional[str] = None |
| 192 | + formatted_messages: List[Dict] = [] |
| 193 | + |
| 194 | + merged_messages = self._merge_messages(messages) |
| 195 | + for i, message in enumerate(merged_messages): |
| 196 | + if message.type == "system": |
| 197 | + if i != 0: |
| 198 | + raise ValueError( |
| 199 | + "System message must be at beginning of message list." |
| 200 | + ) |
| 201 | + if not isinstance(message.content, str): |
| 202 | + raise ValueError( |
| 203 | + "System message must be a string, " |
| 204 | + f"instead was: {type(message.content)}" |
| 205 | + ) |
| 206 | + system = message.content |
| 207 | + continue |
| 208 | + |
| 209 | + role = self.message_type_lookups[message.type] |
| 210 | + content: Union[str, List] |
| 211 | + |
| 212 | + if not isinstance(message.content, str): |
| 213 | + # parse as dict |
| 214 | + assert isinstance( |
| 215 | + message.content, list |
| 216 | + ), "Anthropic message content must be str or list of dicts" |
| 217 | + |
| 218 | + # populate content |
| 219 | + content = [] |
| 220 | + for item in message.content: |
| 221 | + if isinstance(item, str): |
| 222 | + content.append({"type": "text", "text": item}) |
| 223 | + elif isinstance(item, dict): |
| 224 | + if "type" not in item: |
| 225 | + raise ValueError("Dict content item must have a type key") |
| 226 | + elif item["type"] == "image_url": |
| 227 | + # convert format |
| 228 | + source = self._format_image(item["image_url"]["url"]) |
| 229 | + content.append({"type": "image", "source": source}) |
| 230 | + elif item["type"] == "tool_use": |
| 231 | + # If a tool_call with the same id as a tool_use content |
| 232 | + # block exists, the tool_call is preferred. |
| 233 | + if isinstance(message, AIMessage) and item["id"] in [ |
| 234 | + tc["id"] for tc in message.tool_calls |
| 235 | + ]: |
| 236 | + overlapping = [ |
| 237 | + tc |
| 238 | + for tc in message.tool_calls |
| 239 | + if tc["id"] == item["id"] |
| 240 | + ] |
| 241 | + # content.extend( |
| 242 | + # _lc_tool_calls_to_anthropic_tool_use_blocks(overlapping) |
| 243 | + # ) |
| 244 | + else: |
| 245 | + item.pop("text", None) |
| 246 | + content.append(item) |
| 247 | + elif item["type"] == "text": |
| 248 | + text = item.get("text", "") |
| 249 | + # Only add non-empty strings for now as empty ones are not |
| 250 | + # accepted. |
| 251 | + # https://github.com/anthropics/anthropic-sdk-python/issues/461 |
| 252 | + if text.strip(): |
| 253 | + content.append({"type": "text", "text": text}) |
| 254 | + else: |
| 255 | + content.append(item) |
| 256 | + else: |
| 257 | + raise ValueError( |
| 258 | + f"Content items must be str or dict, instead was: {type(item)}" |
| 259 | + ) |
| 260 | + elif isinstance(message, AIMessage) and message.tool_calls: |
| 261 | + content = ( |
| 262 | + [] |
| 263 | + if not message.content |
| 264 | + else [{"type": "text", "text": message.content}] |
| 265 | + ) |
| 266 | + # Note: Anthropic can't have invalid tool calls as presently defined, |
| 267 | + # since the model already returns dicts args not JSON strings, and invalid |
| 268 | + # tool calls are those with invalid JSON for args. |
| 269 | + # content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls) |
| 270 | + else: |
| 271 | + content = message.content |
| 272 | + |
| 273 | + formatted_messages.append({"role": role, "content": content}) |
| 274 | + return system, formatted_messages |
| 275 | + |
| 276 | + def _convert_one_message_to_text_anthropic( |
| 277 | + self, |
| 278 | + message: BaseMessage, |
| 279 | + human_prompt: str, |
| 280 | + ai_prompt: str, |
| 281 | + ) -> str: |
| 282 | + content = cast(str, message.content) |
| 283 | + if isinstance(message, ChatMessage): |
| 284 | + message_text = f"\n\n{message.role.capitalize()}: {content}" |
| 285 | + elif isinstance(message, HumanMessage): |
| 286 | + message_text = f"{human_prompt} {content}" |
| 287 | + elif isinstance(message, AIMessage): |
| 288 | + message_text = f"{ai_prompt} {content}" |
| 289 | + elif isinstance(message, SystemMessage): |
| 290 | + message_text = content |
| 291 | + else: |
| 292 | + raise ValueError(f"Got unknown type {message}") |
| 293 | + return message_text |
| 294 | + |
| 295 | + def convert_messages_to_prompt_anthropic( |
| 296 | + self, |
| 297 | + messages: List[BaseMessage], |
| 298 | + *, |
| 299 | + human_prompt: str = "\n\nHuman:", |
| 300 | + ai_prompt: str = "\n\nAssistant:", |
| 301 | + ) -> str: |
| 302 | + """Format a list of messages into a full prompt for the Anthropic model |
| 303 | + Args: |
| 304 | + messages (List[BaseMessage]): List of BaseMessage to combine. |
| 305 | + human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:". |
| 306 | + ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:". |
| 307 | + Returns: |
| 308 | + str: Combined string with necessary human_prompt and ai_prompt tags. |
| 309 | + """ |
| 310 | + |
| 311 | + messages = messages.copy() # don't mutate the original list |
| 312 | + if not isinstance(messages[-1], AIMessage): |
| 313 | + messages.append(AIMessage(content="")) |
| 314 | + |
| 315 | + text = "".join( |
| 316 | + self._convert_one_message_to_text_anthropic( |
| 317 | + message, human_prompt, ai_prompt |
| 318 | + ) |
| 319 | + for message in messages |
| 320 | + ) |
| 321 | + |
| 322 | + # trim off the trailing ' ' that might come from the "Assistant: " |
| 323 | + return text.rstrip() |
| 324 | + |
| 325 | + # Implement other abstract methods similarly... |
0 commit comments