@@ -245,7 +245,7 @@ def test_add_texts_test() -> None:
245
245
{"id" : "101" , "link" : "Document Example Test 2" },
246
246
]
247
247
model = HuggingFaceEmbeddings (model_name = "sentence-transformers/all-mpnet-base-v2" )
248
- vs_obj = DB2VS (connection , model , "TB1" , DistanceStrategy .EUCLIDEAN_DISTANCE )
248
+ vs_obj = DB2VS (model , "TB1" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
249
249
vs_obj .add_texts (texts , metadata )
250
250
drop_table (connection , "TB1" )
251
251
@@ -256,7 +256,7 @@ def test_add_texts_test() -> None:
256
256
{"link" : "Document Example Test 2" },
257
257
]
258
258
model = HuggingFaceEmbeddings (model_name = "sentence-transformers/all-mpnet-base-v2" )
259
- vs_obj = DB2VS (connection , model , "TB2" , DistanceStrategy .EUCLIDEAN_DISTANCE )
259
+ vs_obj = DB2VS (model , "TB2" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
260
260
vs_obj .add_texts (texts , metadataNoID )
261
261
drop_table (connection , "TB2" )
262
262
@@ -268,14 +268,14 @@ def test_add_texts_test() -> None:
268
268
{"link" : "Document Example Test 2" },
269
269
{"link" : "Document Example Test 3" },
270
270
]
271
- vs_obj = DB2VS (connection , model , "TB2" , DistanceStrategy .EUCLIDEAN_DISTANCE )
271
+ vs_obj = DB2VS (model , "TB2" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
272
272
vs_obj .add_texts (texts1 , metadataPartialID )
273
273
drop_table (connection , "TB2" )
274
274
275
275
# 3. Add record but neither metadata nor ids are there
276
276
# Expectation: Successful, new ID will be generated
277
277
model = HuggingFaceEmbeddings (model_name = "sentence-transformers/all-mpnet-base-v2" )
278
- vs_obj = DB2VS (connection , model , "TB3" , DistanceStrategy .EUCLIDEAN_DISTANCE )
278
+ vs_obj = DB2VS (model , "TB3" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
279
279
texts2 = ["Sam" , "John" ]
280
280
vs_obj .add_texts (texts2 )
281
281
drop_table (connection , "TB3" )
@@ -291,17 +291,17 @@ def test_add_texts_test() -> None:
291
291
# Successful
292
292
# Successful
293
293
294
- vs_obj = DB2VS (connection , model , "TB4" , DistanceStrategy .EUCLIDEAN_DISTANCE )
294
+ vs_obj = DB2VS (model , "TB4" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
295
295
ids4 = ["114" , "124" ]
296
296
vs_obj .add_texts (texts2 , ids = ids4 )
297
297
drop_table (connection , "TB4" )
298
298
299
- vs_obj = DB2VS (connection , model , "TB5" , DistanceStrategy .EUCLIDEAN_DISTANCE )
299
+ vs_obj = DB2VS (model , "TB5" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
300
300
ids5 = ["" , "134" ]
301
301
vs_obj .add_texts (texts2 , ids = ids5 )
302
302
drop_table (connection , "TB5" )
303
303
304
- vs_obj = DB2VS (connection , model , "TB6" , DistanceStrategy .EUCLIDEAN_DISTANCE )
304
+ vs_obj = DB2VS (model , "TB6" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
305
305
ids6 = [
306
306
"""Good afternoon
307
307
my friends""" ,
@@ -310,15 +310,15 @@ def test_add_texts_test() -> None:
310
310
vs_obj .add_texts (texts2 , ids = ids6 )
311
311
drop_table (connection , "TB6" )
312
312
313
- vs_obj = DB2VS (connection , model , "TB7" , DistanceStrategy .EUCLIDEAN_DISTANCE )
313
+ vs_obj = DB2VS (model , "TB7" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
314
314
ids7 = ['"Good afternoon"' , '"India"' ]
315
315
vs_obj .add_texts (texts2 , ids = ids7 )
316
316
drop_table (connection , "TB7" )
317
317
318
318
# 5. Add record with ids option but the id are duplicated
319
319
# Expectations: SQL0803N having duplicate values for the index key
320
320
try :
321
- vs_obj = DB2VS (connection , model , "TB8" , DistanceStrategy .EUCLIDEAN_DISTANCE )
321
+ vs_obj = DB2VS (model , "TB8" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
322
322
ids8 = ["118" , "118" ]
323
323
vs_obj .add_texts (texts2 , ids = ids8 )
324
324
drop_table (connection , "TB8" )
@@ -327,7 +327,7 @@ def test_add_texts_test() -> None:
327
327
328
328
# 6. Add records with both ids and metadatas
329
329
# Expectation: Successful, the ID will be generated based on ids
330
- vs_obj = DB2VS (connection , model , "TB9" , DistanceStrategy .EUCLIDEAN_DISTANCE )
330
+ vs_obj = DB2VS (model , "TB9" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
331
331
texts3 = ["Sam 6" , "John 6" ]
332
332
ids9 = ["1" , "2" ]
333
333
metadata = [
@@ -340,7 +340,7 @@ def test_add_texts_test() -> None:
340
340
# This one may run slow before using executemany() <<<<<<<<<<
341
341
# 7. Add 10000 records
342
342
# Expectation:Successful
343
- vs_obj = DB2VS (connection , model , "TB10" , DistanceStrategy .EUCLIDEAN_DISTANCE )
343
+ vs_obj = DB2VS (model , "TB10" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
344
344
texts4 = ["Sam{0}" .format (i ) for i in range (1 , 10000 )]
345
345
ids10 = ["Hello{0}" .format (i ) for i in range (1 , 10000 )]
346
346
vs_obj .add_texts (texts4 , ids = ids10 )
@@ -352,7 +352,7 @@ def add(val: str) -> None:
352
352
model = HuggingFaceEmbeddings (
353
353
model_name = "sentence-transformers/all-mpnet-base-v2"
354
354
)
355
- vs_obj = DB2VS (connection , model , "TB11" , DistanceStrategy .EUCLIDEAN_DISTANCE )
355
+ vs_obj = DB2VS (model , "TB11" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
356
356
texts5 = [val ]
357
357
ids11 = texts5
358
358
vs_obj .add_texts (texts5 , ids = ids11 )
@@ -371,7 +371,7 @@ def add1(val: str) -> None:
371
371
model = HuggingFaceEmbeddings (
372
372
model_name = "sentence-transformers/all-mpnet-base-v2"
373
373
)
374
- vs_obj = DB2VS (connection , model , "TB12" , DistanceStrategy .EUCLIDEAN_DISTANCE )
374
+ vs_obj = DB2VS (model , "TB12" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
375
375
texts = [val ]
376
376
ids12 = texts
377
377
vs_obj .add_texts (texts , ids = ids12 )
@@ -406,7 +406,7 @@ def test_embed_documents_test() -> None:
406
406
# 1. Embed String Example-'Sam'
407
407
# Expectation: Successful.
408
408
model = HuggingFaceEmbeddings (model_name = "sentence-transformers/all-mpnet-base-v2" )
409
- vs_obj = DB2VS (connection , model , "TB7" , DistanceStrategy .EUCLIDEAN_DISTANCE )
409
+ vs_obj = DB2VS (model , "TB7" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
410
410
vs_obj ._embed_documents (
411
411
[
412
412
"Sam" ,
@@ -438,7 +438,7 @@ def test_embed_query_test() -> None:
438
438
# 1. Embed String
439
439
# Expectation: Successful.
440
440
model = HuggingFaceEmbeddings (model_name = "sentence-transformers/all-mpnet-base-v2" )
441
- vs_obj = DB2VS (connection , model , "TB8" , DistanceStrategy .EUCLIDEAN_DISTANCE )
441
+ vs_obj = DB2VS (model , "TB8" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
442
442
vs_obj ._embed_query ("Sam" )
443
443
444
444
# 2. Embed Empty string
@@ -466,9 +466,9 @@ def test_perform_search_test() -> None:
466
466
model1 = HuggingFaceEmbeddings (
467
467
model_name = "sentence-transformers/paraphrase-mpnet-base-v2"
468
468
)
469
- vs_1 = DB2VS (connection , model1 , "TB10" , DistanceStrategy .EUCLIDEAN_DISTANCE )
470
- vs_2 = DB2VS (connection , model1 , "TB11" , DistanceStrategy .DOT_PRODUCT )
471
- vs_3 = DB2VS (connection , model1 , "TB12" , DistanceStrategy .COSINE )
469
+ vs_1 = DB2VS (model1 , "TB10" , connection , DistanceStrategy .EUCLIDEAN_DISTANCE )
470
+ vs_2 = DB2VS (model1 , "TB11" , connection , DistanceStrategy .DOT_PRODUCT )
471
+ vs_3 = DB2VS (model1 , "TB12" , connection , DistanceStrategy .COSINE )
472
472
473
473
# vector store lists:
474
474
vs_list = [vs_1 , vs_2 , vs_3 ]
@@ -535,7 +535,7 @@ def test_get_pks() -> None:
535
535
536
536
table_name = f"Unique_table_{ int (time .time ())} "
537
537
538
- db2vs = DB2VS (client = connection , embedding_function = model , table_name = table_name )
538
+ db2vs = DB2VS (embedding_function = model , table_name = table_name , client = connection )
539
539
pks = db2vs .get_pks ()
540
540
541
541
assert isinstance (pks , list )
0 commit comments