@@ -74,8 +74,8 @@ def wrapper(*args: Any, **kwargs: Any) -> Any:
74
74
75
75
76
76
def _table_exists (client : Connection , table_name : str ) -> bool :
77
+ cursor = client .cursor ()
77
78
try :
78
- cursor = client .cursor ()
79
79
cursor .execute (f"SELECT COUNT(*) FROM { table_name } " )
80
80
except Exception as ex :
81
81
if "SQL0204N" in str (ex ):
@@ -239,7 +239,7 @@ def __init__(
239
239
self .table_name = table_name
240
240
self .distance_strategy = distance_strategy
241
241
self .params = params
242
- _create_table (client , table_name , embedding_dim )
242
+ _create_table (self . client , self . table_name , embedding_dim )
243
243
except ibm_db_dbi .DatabaseError as db_err :
244
244
logger .exception (f"Database error occurred while create table: { db_err } " )
245
245
raise RuntimeError (
@@ -375,7 +375,7 @@ def add_texts(
375
375
if not metadatas :
376
376
metadatas = [{} for _ in texts ]
377
377
378
- embeddingLen = self .get_embedding_dimension ()
378
+ embedding_len = self .get_embedding_dimension ()
379
379
docs : List [Tuple [Any , Any , Any , Any ]]
380
380
docs = [
381
381
(id_ , f"{ embedding } " , json .dumps (metadata ), text )
@@ -386,7 +386,7 @@ def add_texts(
386
386
387
387
SQL_INSERT = (
388
388
f"INSERT INTO { self .table_name } (id, embedding, metadata, text) "
389
- f"VALUES (?, VECTOR(?, { embeddingLen } , FLOAT32), SYSTOOLS.JSON2BSON(?), ?)"
389
+ f"VALUES (?, VECTOR(?, { embedding_len } , FLOAT32), SYSTOOLS.JSON2BSON(?), ?)"
390
390
)
391
391
392
392
cursor = self .client .cursor ()
@@ -455,13 +455,13 @@ def similarity_search_by_vector_with_relevance_scores(
455
455
** kwargs : Any ,
456
456
) -> List [Tuple [Document , float ]]:
457
457
docs_and_scores = []
458
- embeddingLen = self .get_embedding_dimension ()
458
+ embedding_len = self .get_embedding_dimension ()
459
459
460
460
query = f"""
461
461
SELECT id,
462
462
text,
463
463
SYSTOOLS.BSON2JSON(metadata),
464
- vector_distance(embedding, VECTOR('{ embedding } ', { embeddingLen } , FLOAT32),
464
+ vector_distance(embedding, VECTOR('{ embedding } ', { embedding_len } , FLOAT32),
465
465
{ _get_distance_function (self .distance_strategy )} ) as distance
466
466
FROM { self .table_name }
467
467
ORDER BY distance
@@ -509,13 +509,13 @@ def similarity_search_by_vector_returning_embeddings(
509
509
** kwargs : Any ,
510
510
) -> List [Tuple [Document , float , np .ndarray ]]:
511
511
documents = []
512
- embeddingLen = self .get_embedding_dimension ()
512
+ embedding_len = self .get_embedding_dimension ()
513
513
514
514
query = f"""
515
515
SELECT id,
516
516
text,
517
517
SYSTOOLS.BSON2JSON(metadata),
518
- vector_distance(embedding, VECTOR('{ embedding } ', { embeddingLen } , FLOAT32),
518
+ vector_distance(embedding, VECTOR('{ embedding } ', { embedding_len } , FLOAT32),
519
519
{ _get_distance_function (self .distance_strategy )} ) as distance,
520
520
embedding
521
521
FROM { self .table_name }
0 commit comments