Skip to content

Commit 1c2e8c8

Browse files
authored
Merge pull request #3 from barnuri/copilot/sub-pr-1
[WIP] Fix issue in patch 1
2 parents ce139bf + 5105229 commit 1c2e8c8

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

libs/langchain-mongodb/langchain_mongodb/vectorstores.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -873,8 +873,8 @@ def create_vector_search_index(
873873

874874
def similarity_search_by_vector(
875875
self,
876-
query_vector: list[float],
877-
*args: Any,
876+
embedding: list[float],
877+
k: int = 4,
878878
**kwargs: Any,
879879
) -> list[Document]:
880880
"""Return MongoDB documents most similar to the given query vector.
@@ -883,7 +883,7 @@ def similarity_search_by_vector(
883883
search system alongside your database.
884884
885885
Args:
886-
query_vector: Embedding vector to search for.
886+
embedding: Embedding vector to search for.
887887
k: (Optional) number of documents to return. Defaults to 4.
888888
pre_filter: List of MQL match expressions comparing an indexed field
889889
post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages
@@ -897,9 +897,9 @@ def similarity_search_by_vector(
897897
Returns:
898898
List of documents most similar to the query vector.
899899
"""
900-
tuple_list = self.vector_store._similarity_search_with_score(
901-
query_vector,
902-
*args,
900+
tuple_list = self._similarity_search_with_score(
901+
embedding,
902+
k=k,
903903
**kwargs,
904904
)
905905
return [doc for doc, _ in tuple_list]

0 commit comments

Comments
 (0)