Replies: 3 comments 6 replies
-
@pankai01 Were you able to figure this out? |
Beta Was this translation helpful? Give feedback.
5 replies
-
python package version problem |
Beta Was this translation helpful? Give feedback.
1 reply
-
https://stackoverflow.com/questions/68916893/typeerror-numpy-dtypemeta-object-is-not-subscriptable |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
When I use the Chroma.from_documents,I encounter a type error:TypeError: 'numpy._DTypeMeta' object is not subscriptable
My code is here:
Python 3.9.16
numpy Version: 1.24.3
langchain Version: 0.0.184
and this the stack
TypeError Traceback (most recent call last)
Cell In[39], line 23
21 embeddings = OpenAIEmbeddings()
22 #将 document 通过 openai 的 embeddings 对象计算 embedding 向量信息并临时存入 chroma 向量数据库,用于后续匹配查询
---> 23 docsearch = Chroma.from_documents(split_docs, embeddings, persist_directory="./chroma")
25 #docsearch = Chroma(persist_directory="./chroma", embedding_function=embeddings)
26
27 #创建问答对象
(...)
31 #print(result)
32 #docsearch.persist()
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/langchain/vectorstores/chroma.py:433, in Chroma.from_documents(cls, documents, embedding, ids, collection_name, persist_directory, client_settings, client, **kwargs)
431 texts = [doc.page_content for doc in documents]
432 metadatas = [doc.metadata for doc in documents]
--> 433 return cls.from_texts(
434 texts=texts,
435 embedding=embedding,
436 metadatas=metadatas,
437 ids=ids,
438 collection_name=collection_name,
439 persist_directory=persist_directory,
440 client_settings=client_settings,
441 client=client,
442 )
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/langchain/vectorstores/chroma.py:394, in Chroma.from_texts(cls, texts, embedding, metadatas, ids, collection_name, persist_directory, client_settings, client, **kwargs)
364 @classmethod
365 def from_texts(
366 cls: Type[Chroma],
(...)
375 **kwargs: Any,
376 ) -> Chroma:
377 """Create a Chroma vectorstore from a raw documents.
378
379 If a persist_directory is specified, the collection will be persisted there.
(...)
392 Chroma: Chroma vectorstore.
393 """
--> 394 chroma_collection = cls(
395 collection_name=collection_name,
396 embedding_function=embedding,
397 persist_directory=persist_directory,
398 client_settings=client_settings,
399 client=client,
400 )
401 chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
402 return chroma_collection
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/langchain/vectorstores/chroma.py:69, in Chroma.init(self, collection_name, embedding_function, persist_directory, client_settings, collection_metadata, client)
67 """Initialize with Chroma client."""
68 try:
---> 69 import chromadb
70 import chromadb.config
71 except ImportError:
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/chromadb/init.py:1
----> 1 import chromadb.config
2 import logging
3 from chromadb.telemetry.events import ClientStartEvent
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/chromadb/config.py:6
4 import importlib
5 import logging
----> 6 import chromadb.db
7 import chromadb.api
8 import chromadb.telemetry
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/chromadb/db/init.py:4
2 from typing import List, Sequence, Optional, Tuple
3 from uuid import UUID
----> 4 import numpy.typing as npt
5 from chromadb.api.types import (
6 Embeddings,
7 Documents,
(...)
12 WhereDocument,
13 )
16 class DB(ABC):
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/numpy/typing/init.py:158
1 """
2 ============================
3 Typing (:mod:
numpy.typing
)(...)
153
154 """
155 # NOTE: The API section will be appended with additional entries
156 # further down in this file
--> 158 from numpy._typing import (
159 ArrayLike,
160 DTypeLike,
161 NBitBase,
162 NDArray,
163 )
165 all = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"]
167 if doc is not None:
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/numpy/_typing/init.py:164
148 from ._scalars import (
149 _CharLike_co as _CharLike_co,
150 _BoolLike_co as _BoolLike_co,
(...)
158 _VoidLike_co as _VoidLike_co,
159 )
160 from ._shape import (
161 _Shape as _Shape,
162 _ShapeLike as _ShapeLike,
163 )
--> 164 from ._dtype_like import (
165 DTypeLike as DTypeLike,
166 _DTypeLike as _DTypeLike,
167 _SupportsDType as _SupportsDType,
168 _VoidDTypeLike as _VoidDTypeLike,
169 _DTypeLikeBool as _DTypeLikeBool,
170 _DTypeLikeUInt as _DTypeLikeUInt,
171 _DTypeLikeInt as _DTypeLikeInt,
172 _DTypeLikeFloat as _DTypeLikeFloat,
173 _DTypeLikeComplex as _DTypeLikeComplex,
174 _DTypeLikeTD64 as _DTypeLikeTD64,
175 _DTypeLikeDT64 as _DTypeLikeDT64,
176 _DTypeLikeObject as _DTypeLikeObject,
177 _DTypeLikeVoid as _DTypeLikeVoid,
178 _DTypeLikeStr as _DTypeLikeStr,
179 _DTypeLikeBytes as _DTypeLikeBytes,
180 _DTypeLikeComplex_co as _DTypeLikeComplex_co,
181 )
182 from ._array_like import (
183 ArrayLike as ArrayLike,
184 _ArrayLike as _ArrayLike,
(...)
202 _UnknownType as _UnknownType,
203 )
204 from ._generic_alias import (
205 NDArray as NDArray,
206 _DType as _DType,
207 _GenericAlias as _GenericAlias,
208 )
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/numpy/_typing/_dtype_like.py:17
14 import numpy as np
16 from ._shape import _ShapeLike
---> 17 from ._generic_alias import _DType as DType
19 from ._char_codes import (
20 _BoolCodes,
21 _UInt8Codes,
(...)
58 _ObjectCodes,
59 )
61 _SCT = TypeVar("_SCT", bound=np.generic)
File ~/miniconda3/envs/d2l/lib/python3.9/site-packages/numpy/_typing/_generic_alias.py:241
238 ScalarType = TypeVar("ScalarType", bound=np.generic, covariant=True)
240 if TYPE_CHECKING or sys.version_info >= (3, 9):
--> 241 _DType = np.dtype[ScalarType]
242 NDArray = np.ndarray[Any, np.dtype[ScalarType]]
243 else:
TypeError: 'numpy._DTypeMeta' object is not subscriptable
Beta Was this translation helpful? Give feedback.
All reactions