You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Open Deep Research is a configurable, fully open-source deep research agent that works across multiple model providers, search tools, and MCP (Model Context Protocol) servers. It enables automated research with parallel processing and comprehensive report generation.
5
+
6
+
## Repository Structure
7
+
8
+
### Root Directory
9
+
-`README.md` - Comprehensive project documentation with quickstart guide
10
+
-`pyproject.toml` - Python project configuration and dependencies
11
+
-`langgraph.json` - LangGraph configuration defining the main graph entry point
@@ -7,6 +7,10 @@ Deep research has broken out as one of the most popular agent applications. This
7
7
* Read more in our [blog](https://blog.langchain.com/open-deep-research/)
8
8
* See our [video](https://www.youtube.com/watch?v=agGiWUpxkhg) for a quick overview
9
9
10
+
### 🔥 Recent Updates
11
+
12
+
**August 2, 2025**: Achieved #6 ranking on the [Deep Research Bench Leaderboard](https://huggingface.co/spaces/Ayanami0730/DeepResearch-Leaderboard) with an overall score of 0.4344.
13
+
10
14
### 🚀 Quickstart
11
15
12
16
1. Clone the repository and activate a virtual environment:
@@ -19,6 +23,8 @@ source .venv/bin/activate # On Windows: .venv\Scripts\activate
19
23
20
24
2. Install dependencies:
21
25
```bash
26
+
uv sync
27
+
# or
22
28
uv pip install -r pyproject.toml
23
29
```
24
30
@@ -44,9 +50,9 @@ Use this to open the Studio UI:
44
50
45
51
Ask a question in the `messages` input field and click `Submit`.
46
52
47
-
### Configurations
53
+
### ⚙️ Configurations
48
54
49
-
Open Deep Research offers extensive configuration options to customize the research process and model behavior. All configurations can be set via the web UI, environment variables, or by modifying the configuration directly.
55
+
Extensive configuration options to customize research behavior. Configure via web UI, environment variables, or direct modification.
50
56
51
57
#### General Settings
52
58
@@ -64,9 +70,9 @@ Open Deep Research offers extensive configuration options to customize the resea
64
70
65
71
Open Deep Research uses multiple specialized models for different research tasks:
66
72
67
-
-**Summarization Model** (default: `openai:gpt-4.1-nano`): Summarizes research results from search APIs
73
+
-**Summarization Model** (default: `openai:gpt-4.1-mini`): Summarizes research results from search APIs
68
74
-**Research Model** (default: `openai:gpt-4.1`): Conducts research and analysis
69
-
-**Compression Model** (default: `openai:gpt-4.1-mini`): Compresses research findings from sub-agents
75
+
-**Compression Model** (default: `openai:gpt-4.1`): Compresses research findings from sub-agents
70
76
-**Final Report Model** (default: `openai:gpt-4.1`): Writes the final comprehensive report
71
77
72
78
All models are configured using [init_chat_model() API](https://python.langchain.com/docs/how_to/chat_models_universal_init/) which supports providers like OpenAI, Anthropic, Google Vertex AI, and others.
-`tests/prompts.py`: Evaluation prompts for each dimension
137
139
138
-
### Deployments and Usages
140
+
#### **Deep Research Bench Submission:**
141
+
The evaluation runs against the [Deep Research Bench](https://github.com/Ayanami0730/deep_research_bench), a comprehensive benchmark with 100 PhD-level research tasks across 22 fields.
142
+
143
+
To submit results to the benchmark:
144
+
145
+
1.**Run Evaluation**: Execute `python tests/run_evaluate.py` to evaluate against the Deep Research Bench dataset
146
+
2.**Extract Results**: Use the extraction script to generate JSONL output:
This creates `tests/expt_results/deep_research_bench_gpt-4.1.jsonl` with the required format.
151
+
3.**Submit to Benchmark**: Move the generated JSONL file to the Deep Research Bench repository and follow their [Quick Start guide](https://github.com/Ayanami0730/deep_research_bench?tab=readme-ov-file#quick-start) for evaluation submission
152
+
153
+
> **Note:** We submitted results from [this commit](https://github.com/langchain-ai/open_deep_research/commit/c0a160b57a9b5ecd4b8217c3811a14d8eff97f72) to the Deep Research Bench, resulting in an overall score of 0.4344 (#6 on the leaderboard).
154
+
155
+
Results for current `main` branch utilize more constrained prompting to reduce token spend ~4x while still achieving a score of 0.4268.
156
+
157
+
#### **Current Results (Main Branch)**
158
+
159
+
| Metric | Score |
160
+
|--------|-------|
161
+
| Comprehensiveness | 0.4145 |
162
+
| Insight | 0.3854 |
163
+
| Instruction Following | 0.4780 |
164
+
| Readability | 0.4495 |
165
+
|**Overall Score**|**0.4268**|
166
+
167
+
### 🚀 Deployments and Usage
168
+
169
+
Multiple deployment options for different use cases.
139
170
140
171
#### LangGraph Studio
141
172
@@ -155,10 +186,10 @@ You can also deploy your own instance of OAP, and make your own custom agents (l
155
186
1.[Deploy Open Agent Platform](https://docs.oap.langchain.com/quickstart)
156
187
2.[Add Deep Researcher to OAP](https://docs.oap.langchain.com/setup/agents)
157
188
158
-
### Updates 🔥
159
-
160
189
### Legacy Implementations 🏛️
161
190
191
+
Read about the evolution from our original implementations to the current version in our [blog post](https://rlancemartin.github.io/2025/07/30/bitter_lesson/).
192
+
162
193
The `src/legacy/` folder contains two earlier implementations that provide alternative approaches to automated research:
0 commit comments