Skip to content

Commit 6d0d7d9

Browse files
author
Vishikh Athavale
committed
fix docs merge conflicts
1 parent 084963c commit 6d0d7d9

File tree

2 files changed

+2
-180
lines changed

2 files changed

+2
-180
lines changed

docs/source/index.rst

Lines changed: 2 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,10 @@
11
Welcome to PYSEQM Documentation
22
==================================
33

4-
PYSEQM(PYtorch-based Semi-Empirical Quantum Mechanics) is a Semi-Empirical Quantum Mechanics package implemented in PyTorch. It provides built-in interfaces for machine learning and efficient molecular dynamic engines with GPU support.
4+
PYSEQM (PYtorch-based Semi-Empirical Quantum Mechanics) is a Semi-Empirical Quantum Mechanics package implemented in PyTorch. It provides built-in interfaces for machine learning and efficient molecular dynamic engines with GPU support.
55

66

7-
<<<<<<< HEAD
8-
Several molecular dynamics algorithms are implemented for facilitating dynamics simulations, inlcuding orginal and Extended Lagrangian Born-Oppenheimer Molecular Dynamics, geometry optimization and thermostats.
9-
=======
10-
Several molecular dynamics algorithms are implemented for facilitating dynamic simulations, inlcuding Extended Lagrangian Born-Oppenheimer Molecular Dynamics, geometric optimization and several thermostats.
11-
>>>>>>> b817174 (update)
7+
Several molecular dynamics algorithms are implemented for facilitating dynamics simulations, including Born-Oppenheimer Molecular Dynamics (BOMD), Extended-Lagrangin BOMD, geometry optimization and thermostats.
128

139

1410

docs/source/quick_start.rst

Lines changed: 0 additions & 174 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,7 @@ Quickstart
44

55

66

7-
<<<<<<< HEAD
87
This quickstart is a high-level introduction on how to get started with using PySEQM.
9-
=======
10-
This quickstart is a high level introduction on how to get started using PySEQM.
118

129
For full examples, please check out our `GitHub repository <https://github.com/lanl/pyseqm>`_ and the `examples directory <https://github.com/lanl/PYSEQM/tree/master/examples>`_.
1310

@@ -19,9 +16,6 @@ For full examples, please check out our `GitHub repository <https://github.com/l
1916
Single Point SCF
2017
------------------------------
2118

22-
23-
Computes the electronic structure of a molecule by iteratively solving for the electron density or wavefunction until convergence, enabling calculation of total energy and related properties.
24-
2519
.. code-block:: python
2620
2721
@@ -77,140 +71,11 @@ Computes the electronic structure of a molecule by iteratively solving for the e
7771
molecules = Molecule(const, seqm_parameters, coordinates, species).to(device)
7872
esdriver = Electronic_Structure(seqm_parameters).to(device)
7973
esdriver(molecules)
80-
>>>>>>> b817174 (update)
81-
82-
83-
84-
85-
86-
87-
SCF and Excited State Calculations
88-
------------------------------
89-
90-
<<<<<<< HEAD
91-
Once initialized, an SCF calculation can be run directly to compute total energy:
92-
=======
93-
Estimates the energies of electronically excited states by solving for higher energy eigenvalues of the electronic Hamiltonian, extending SCF results beyond the ground state.
94-
>>>>>>> b817174 (update)
95-
96-
.. code-block:: python
97-
98-
99-
100-
import torch
101-
from seqm.seqm_functions.constants import Constants
102-
from seqm.Molecule import Molecule
103-
from seqm.ElectronicStructure import Electronic_Structure
104-
from seqm.seqm_functions.read_xyz import read_xyz
105-
106-
107-
torch.set_default_dtype(torch.float64)
108-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
109-
110-
111-
112-
species = torch.as_tensor([[8,6,1,1],
113-
[8,6,1,1],
114-
[8,8,6,0]],
115-
dtype=torch.int64, device=device)
116-
117-
coordinates = torch.tensor([
118-
[
119-
[0.00, 0.00, 0.00],
120-
[1.22, 0.00, 0.00],
121-
[1.82, 0.94, 0.00],
122-
[1.82, -0.94, 0.00]
123-
],
124-
[
125-
[0.00, 0.00, 0.00],
126-
[1.22, 0.00, 0.00],
127-
[1.82, 0.94, 0.00],
128-
[1.82, -0.94, 0.00]
129-
],
130-
[
131-
[0.00, 0.00, 0.00],
132-
[1.23, 0.00, 0.00],
133-
[1.82, 0.94, 0.00],
134-
[0.0, 0.0, 0.0]
135-
]
136-
], device=device)
137-
138-
<<<<<<< HEAD
139-
.. code-block:: python
140-
141-
142-
143-
144-
species, coordinates = read_xyz(['./data.xyz'])
145-
=======
146-
>>>>>>> b817174 (update)
147-
148-
species = torch.as_tensor(species, dtype=torch.int64, device=device)[:]
149-
coordinates = torch.tensor(coordinates, device=device)[:]
150-
const = Constants().to(device)
151-
152-
elements = [0] + sorted(set(species.reshape(-1).tolist()))
153-
154-
seqm_parameters = {
155-
'method': 'AM1',
156-
'scf_eps': 1.0e-8,
157-
'scf_converger': [2, 0.0],
158-
'sp2': [False, 1.0e-5],
159-
'elements': elements,
160-
'learned': [],
161-
'pair_outer_cutoff': 1.0e8,
162-
'eig': True,
163-
'excited_states': {'n_states': 10},
164-
}
165-
166-
<<<<<<< HEAD
167-
User-defined parameters for calculations are set using the seqm_parameters dictionary.
168-
169-
170-
**method:** Austin Model 1
171-
172-
**scf_eps:** If the energy change between two SCF steps is smaller than this value, then SCF is converged.
173-
174-
**scf_converger:** Converger used for SCF.
175-
176-
**sp2:**
177-
178-
**elements:** Atomic numbers in the data from species.
179-
180-
**learned:** Learned parameters name list.
181-
182-
**pair_outer_cutoff:** The value for how far apart two atoms can be before their interaction is ignored.
183-
184-
**eig:** Whether or not to diagonalize the Fock matrix.
185-
186-
**excited_states:** The number of excited states to calcuate.
187-
188-
189-
190-
191-
192-
.. code-block:: python
193-
194-
195-
196-
=======
197-
>>>>>>> b817174 (update)
198-
molecules = Molecule(const, seqm_parameters, coordinates, species).to(device)
199-
esdriver = Electronic_Structure(seqm_parameters).to(device)
200-
esdriver(molecules)
201-
20274
20375
20476
Molecular Dynamics(NVE)
20577
----------------------
20678

207-
<<<<<<< HEAD
208-
You can run molecular dynamics using Born-Oppenheimer Molecular Dynamics (BOMD) or Extended-Lagrangian BOMD:
209-
=======
210-
Tracks the natural evolution of a system of atoms under Newton’s laws in an isolated environment—no energy exchange with surroundings. Energy is conserved, and atomic motion arises solely from interatomic forces.
211-
212-
>>>>>>> b817174 (update)
213-
21479
.. code-block:: python
21580
21681
import torch
@@ -222,15 +87,6 @@ Tracks the natural evolution of a system of atoms under Newton’s laws in an is
22287
torch.set_default_dtype(torch.float64)
22388
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
22489
225-
226-
<<<<<<< HEAD
227-
Add import statements for PyTorch, and the relevant seqm modules.
228-
Set the datatype to float64 for calculations in double precision and set device to GPU.
229-
230-
.. code-block:: python
231-
232-
species, coordinates = read_xyz(['./data.xyz'])
233-
=======
23490
species = torch.as_tensor([[8,6,1,1],
23591
[8,6,1,1],
23692
[8,8,6,0]],
@@ -256,54 +112,25 @@ Set the datatype to float64 for calculations in double precision and set device
256112
[0.0, 0.0, 0.0]
257113
]
258114
], device=device)
259-
>>>>>>> b817174 (update)
260115
261-
species = torch.as_tensor(species, dtype=torch.int64, device=device)[:]
262-
coordinates = torch.tensor(coordinates, device=device)[:]
263116
const = Constants().to(device)
264117
265-
elements = [0] + sorted(set(species.reshape(-1).tolist()))
266-
267118
seqm_parameters = {
268119
'method': 'AM1',
269120
'scf_eps': 1.0e-6,
270121
'scf_converger': [2, 0.0],
271122
'sp2': [False, 1.0e-5],
272-
'elements': elements,
273123
'learned': [],
274124
'pair_outer_cutoff': 1.0e10,
275125
}
276126
277-
278-
<<<<<<< HEAD
279-
User-defined parameters for calculations are set using the seqm_parameters dictionary.
280-
281-
.. code-block:: python
282-
283-
284-
285-
=======
286-
>>>>>>> b817174 (update)
287127
output = {
288128
'molid': [0],
289129
'thermo': 1,
290130
'dump': 1,
291131
'prefix': '../../Outputs_location'
292132
}
293133
294-
<<<<<<< HEAD
295-
The 'molid' key takes a list as the value. This list should contain the indices of the molecules on which MD has to be run, if multiple molecules have been given as input.
296-
297-
xxx
298-
299-
xxx
300-
301-
Set the output file path.
302-
303-
.. code-block:: python
304-
305-
=======
306-
>>>>>>> b817174 (update)
307134
molecule = Molecule(const, seqm_parameters, coordinates, species).to(device)
308135
md = Molecular_Dynamics_Basic(seqm_parameters=seqm_parameters, Temp=300.0, timestep=0.4, output=output).to(device)
309136
md.initialize_velocity(molecule)
@@ -385,4 +212,3 @@ Simulates atomic trajectories under the influence of both deterministic interato
385212
md.initialize_velocity(molecule)
386213
_ = md.run(molecule, 10, remove_com=[True, 1], Info_log=True)
387214
388-

0 commit comments

Comments
 (0)