|
| 1 | +Examples |
| 2 | +============ |
| 3 | + |
| 4 | + |
| 5 | +Excited States RIS |
| 6 | +------------------------------ |
| 7 | + |
| 8 | +.. code-block:: python |
| 9 | +
|
| 10 | +
|
| 11 | + import torch |
| 12 | + from seqm.seqm_functions.constants import Constants |
| 13 | + from seqm.Molecule import Molecule |
| 14 | + from seqm.ElectronicStructure import Electronic_Structure |
| 15 | +
|
| 16 | + import warnings |
| 17 | + warnings.filterwarnings("ignore") |
| 18 | +
|
| 19 | + torch.set_default_dtype(torch.float64) |
| 20 | + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 21 | +
|
| 22 | + # Define species and coordinates |
| 23 | + species = torch.as_tensor([[6, 1, 1, 1, 1]], dtype=torch.int64, device=device) |
| 24 | + coordinates = torch.tensor([[ |
| 25 | + [ 0.00000, 0.00000, 0.00000], |
| 26 | + [ 0.00000, 0.00000, 1.08900], |
| 27 | + [ 1.02672, 0.00000, -0.36300], |
| 28 | + [-0.51336, -0.88916, -0.36300], |
| 29 | + [-0.51336, 0.88916, -0.36300], |
| 30 | + ]], device=device) |
| 31 | +
|
| 32 | + # Set up constants and parameters |
| 33 | + const = Constants().to(device) |
| 34 | + elements = [0] + sorted(set(species.reshape(-1).tolist())) |
| 35 | +
|
| 36 | + seqm_parameters = { |
| 37 | + 'method': 'AM1', |
| 38 | + 'scf_eps': 1.0e-6, |
| 39 | + 'scf_converger': [2, 0.0], |
| 40 | + 'sp2': [False, 1.0e-5], |
| 41 | + 'elements': elements, |
| 42 | + 'learned': [], |
| 43 | + 'pair_outer_cutoff': 1.0e10, |
| 44 | + 'eig': True, |
| 45 | + 'excited_states': {'n_states': 10, 'method': 'rpa'}, |
| 46 | + } |
| 47 | +
|
| 48 | + # Create molecule and electronic structure driver |
| 49 | + molecules = Molecule(const, seqm_parameters, coordinates, species).to(device) |
| 50 | + esdriver = Electronic_Structure(seqm_parameters).to(device) |
| 51 | + esdriver(molecules) |
| 52 | +
|
| 53 | +
|
| 54 | +
|
| 55 | +
|
| 56 | +Excited States CIS |
| 57 | +------------------------------ |
| 58 | + |
| 59 | +.. code-block:: python |
| 60 | +
|
| 61 | +
|
| 62 | + import torch |
| 63 | + from seqm.seqm_functions.constants import Constants |
| 64 | + from seqm.Molecule import Molecule |
| 65 | + from seqm.ElectronicStructure import Electronic_Structure |
| 66 | +
|
| 67 | + import warnings |
| 68 | + warnings.filterwarnings("ignore") |
| 69 | +
|
| 70 | + torch.set_default_dtype(torch.float64) |
| 71 | + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 72 | +
|
| 73 | + # Define species and coordinates |
| 74 | + species = torch.as_tensor([[6, 1, 1, 1, 1]], dtype=torch.int64, device=device) |
| 75 | + coordinates = torch.tensor([[ |
| 76 | + [ 0.00000, 0.00000, 0.00000], |
| 77 | + [ 0.00000, 0.00000, 1.08900], |
| 78 | + [ 1.02672, 0.00000, -0.36300], |
| 79 | + [-0.51336, -0.88916, -0.36300], |
| 80 | + [-0.51336, 0.88916, -0.36300], |
| 81 | + ]], device=device) |
| 82 | +
|
| 83 | + # Set up constants and parameters |
| 84 | + const = Constants().to(device) |
| 85 | + elements = [0] + sorted(set(species.reshape(-1).tolist())) |
| 86 | +
|
| 87 | + seqm_parameters = { |
| 88 | + 'method': 'AM1', |
| 89 | + 'scf_eps': 1.0e-6, |
| 90 | + 'scf_converger': [2, 0.0], |
| 91 | + 'sp2': [False, 1.0e-5], |
| 92 | + 'elements': elements, |
| 93 | + 'learned': [], |
| 94 | + 'pair_outer_cutoff': 1.0e10, |
| 95 | + 'eig': True, |
| 96 | + 'excited_states': {'n_states': 10, 'method': 'cis'}, |
| 97 | + } |
| 98 | +
|
| 99 | + # Create molecule and electronic structure driver |
| 100 | + molecules = Molecule(const, seqm_parameters, coordinates, species).to(device) |
| 101 | + esdriver = Electronic_Structure(seqm_parameters).to(device) |
| 102 | + esdriver(molecules) |
| 103 | +
|
| 104 | +
|
| 105 | +
|
| 106 | +
|
| 107 | +
|
| 108 | +
|
| 109 | +BOMD |
| 110 | +------------------------------ |
| 111 | + |
| 112 | +.. code-block:: python |
| 113 | +
|
| 114 | +
|
| 115 | +
|
| 116 | + import torch |
| 117 | + from seqm.seqm_functions.constants import Constants |
| 118 | + from seqm.Molecule import Molecule |
| 119 | + from seqm.MolecularDynamics import Molecular_Dynamics_Basic |
| 120 | + from seqm.MolecularDynamics import Molecular_Dynamics_Langevin |
| 121 | +
|
| 122 | +
|
| 123 | + # Use double precision |
| 124 | + torch.set_default_dtype(torch.float64) |
| 125 | +
|
| 126 | + # Select device |
| 127 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 128 | +
|
| 129 | + # Define atomic species and coordinates |
| 130 | + species = torch.tensor([[8, 6, 1, 1], [5, 1, 1, 1]], dtype=torch.int64, device=device) |
| 131 | +
|
| 132 | + coordinates = torch.tensor( |
| 133 | + [ |
| 134 | + [ |
| 135 | + [0.00, 0.0, 0.0], |
| 136 | + [1.22, 0.0, 0.0], |
| 137 | + [1.82, 0.94, 0.0], |
| 138 | + [1.82, -0.94, 0.0], |
| 139 | + ], |
| 140 | + [ |
| 141 | + [0.00, 0.00, 0.00], |
| 142 | + [1.20, 0.00, 0.00], |
| 143 | + [-0.60, 1.03, 0.00], |
| 144 | + [-0.60, -1.03, 0.00], |
| 145 | + ], |
| 146 | + ], |
| 147 | + device=device, |
| 148 | + ) |
| 149 | +
|
| 150 | + # Constants and SEQM parameters |
| 151 | + const = Constants().to(device) |
| 152 | + elements = [0] + sorted(set(species.reshape(-1).tolist())) |
| 153 | +
|
| 154 | + seqm_parameters = { |
| 155 | + "method": "AM1", |
| 156 | + "scf_eps": 1.0e-6, |
| 157 | + "scf_converger": [2, 0.0], |
| 158 | + "sp2": [False, 1.0e-5], |
| 159 | + "elements": elements, |
| 160 | + "learned": [], |
| 161 | + "pair_outer_cutoff": 1.0e10, |
| 162 | + "eig": True, |
| 163 | + } |
| 164 | +
|
| 165 | + # Output settings |
| 166 | + output = { |
| 167 | + "molid": [0, 1], |
| 168 | + "thermo": 1, |
| 169 | + "dump": 1, |
| 170 | + "prefix": "Outputs/MD_BOMD", |
| 171 | + } |
| 172 | +
|
| 173 | + # Create molecule object |
| 174 | + molecule = Molecule(const, seqm_parameters, coordinates, species).to(device) |
| 175 | +
|
| 176 | + # Example 1: Basic NVE dynamics |
| 177 | + md_nve = Molecular_Dynamics_Basic( |
| 178 | + seqm_parameters=seqm_parameters, Temp=400.0, timestep=0.4, output=output |
| 179 | + ).to(device) |
| 180 | + md_nve.initialize_velocity(molecule) |
| 181 | + md_nve.run(molecule, steps=10, remove_com=[True, 1], Info_log=True) |
| 182 | +
|
| 183 | + # Example 2: NVE with energy shift compensation |
| 184 | + output["prefix"] = "Outputs/MD_BOMD_Energy_Control" |
| 185 | + md_energy_control = Molecular_Dynamics_Basic( |
| 186 | + seqm_parameters=seqm_parameters, Temp=400.0, timestep=0.4, output=output |
| 187 | + ).to(device) |
| 188 | + md_energy_control.initialize_velocity(molecule) |
| 189 | + md_energy_control.run( |
| 190 | + molecule, steps=10, control_energy_shift=True, remove_com=[True, 1], Info_log=True |
| 191 | + ) |
| 192 | +
|
| 193 | + # Example 3: NVT with temperature control |
| 194 | + output["prefix"] = "Outputs/MD_BOMD_Temp_Control" |
| 195 | + md_temp_control = Molecular_Dynamics_Basic( |
| 196 | + seqm_parameters=seqm_parameters, Temp=400.0, timestep=0.4, output=output |
| 197 | + ).to(device) |
| 198 | + md_temp_control.initialize_velocity(molecule) |
| 199 | + md_temp_control.run( |
| 200 | + molecule, steps=10, scale_vel=[1, 400], remove_com=[True, 1], Info_log=True |
| 201 | + ) |
| 202 | +
|
| 203 | + # Example 4: Langevin dynamics |
| 204 | + output["prefix"] = "Outputs/MD_BOMD_Langevin" |
| 205 | + md_langevin = Molecular_Dynamics_Langevin( |
| 206 | + damp=100.0, seqm_parameters=seqm_parameters, Temp=400.0, timestep=0.4, output=output |
| 207 | + ).to(device) |
| 208 | + md_langevin.initialize_velocity(molecule) |
| 209 | + md_langevin.run(molecule, steps=10, remove_com=[True, 1], Info_log=True) |
| 210 | +
|
| 211 | +
|
| 212 | +
|
| 213 | +
|
| 214 | +
|
| 215 | +XL-BOMD |
| 216 | +------------------------------ |
| 217 | + |
| 218 | +.. code-block:: python |
| 219 | +
|
| 220 | +
|
| 221 | + import torch |
| 222 | + from seqm.seqm_functions.constants import Constants |
| 223 | + from seqm.Molecule import Molecule |
| 224 | + from seqm.MolecularDynamics import KSA_XL_BOMD |
| 225 | +
|
| 226 | + # Set default tensor precision |
| 227 | + torch.set_default_dtype(torch.float64) |
| 228 | + torch.manual_seed(0) |
| 229 | +
|
| 230 | + # Set device |
| 231 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 232 | +
|
| 233 | + # Define species and coordinates |
| 234 | + species = torch.tensor([[8, 6, 1, 1], [5, 1, 1, 1]], dtype=torch.int64, device=device) |
| 235 | +
|
| 236 | + coordinates = torch.tensor([ |
| 237 | + [ |
| 238 | + [0.00, 0.0, 0.0], |
| 239 | + [1.22, 0.0, 0.0], |
| 240 | + [1.82, 0.94, 0.0], |
| 241 | + [1.82, -0.94, 0.0], |
| 242 | + ], |
| 243 | + [ |
| 244 | + [0.00, 0.00, 0.00], |
| 245 | + [1.20, 0.00, 0.00], |
| 246 | + [-0.60, 1.03, 0.00], |
| 247 | + [-0.60, -1.03, 0.00], |
| 248 | + ] |
| 249 | + ], device=device) |
| 250 | +
|
| 251 | + # Load constants and configure parameters |
| 252 | + const = Constants().to(device) |
| 253 | + elements = [0] + sorted(set(species.reshape(-1).tolist())) |
| 254 | +
|
| 255 | + seqm_parameters = { |
| 256 | + 'method': 'AM1', |
| 257 | + 'scf_eps': 1.0e-6, |
| 258 | + 'scf_converger': [2, 0.0], |
| 259 | + 'sp2': [False, 1.0e-5], |
| 260 | + 'elements': elements, |
| 261 | + 'learned': [], |
| 262 | + 'pair_outer_cutoff': 1.0e10, |
| 263 | + 'eig': True |
| 264 | + } |
| 265 | +
|
| 266 | + # Output and KSA-XL-BOMD specific parameters |
| 267 | + output = { |
| 268 | + 'molid': [0, 1], |
| 269 | + 'thermo': 1, |
| 270 | + 'dump': 1, |
| 271 | + 'prefix': 'Outputs/KSA_XL_BOMD' |
| 272 | + } |
| 273 | +
|
| 274 | + xl_bomd_params = { |
| 275 | + 'k': 6, |
| 276 | + 'max_rank': 3, |
| 277 | + 'err_threshold': 0.0, |
| 278 | + 'T_el': 1500 |
| 279 | + } |
| 280 | +
|
| 281 | + # Initialize molecule and dynamics engine |
| 282 | + molecule = Molecule(const, seqm_parameters, coordinates, species).to(device) |
| 283 | +
|
| 284 | + md = KSA_XL_BOMD( |
| 285 | + xl_bomd_params=xl_bomd_params, |
| 286 | + seqm_parameters=seqm_parameters, |
| 287 | + Temp=400.0, |
| 288 | + timestep=0.4, |
| 289 | + output=output |
| 290 | + ).to(device) |
| 291 | +
|
| 292 | + # Initialize velocity and run dynamics |
| 293 | + md.initialize_velocity(molecule) |
| 294 | + md.run(molecule, steps=10, remove_com=[True, 1], Info_log=True) |
0 commit comments