|
| 1 | +""" |
| 2 | +Based on: |
| 3 | + https://github.com/Erotemic/misc/blob/main/tests/python/bench_template.py |
| 4 | +
|
| 5 | +Requirements: |
| 6 | + pip install ubelt timerit pandas numpy seaborn matplotlib |
| 7 | +""" |
| 8 | + |
| 9 | + |
| 10 | +def random_lark_grammar(size): |
| 11 | + """ |
| 12 | + TODO: could likely be more sophisticated with how we *generate* random |
| 13 | + text. (Almost as if that's what CFGs do!). |
| 14 | + """ |
| 15 | + lines = [ |
| 16 | + 'start: final', |
| 17 | + 'simple_rule_0 : CNAME' |
| 18 | + ] |
| 19 | + idx = 0 |
| 20 | + for idx in range(1, size): |
| 21 | + lines.append(f'simple_rule_{idx} : "(" simple_rule_{idx - 1} ")"') |
| 22 | + |
| 23 | + lines.append(f'final : simple_rule_{idx} "."') |
| 24 | + lines.append('%import common.CNAME') |
| 25 | + text = '\n'.join(lines) |
| 26 | + return text |
| 27 | + |
| 28 | + |
| 29 | +def _autompl_lite(): |
| 30 | + """ |
| 31 | + A minimal port of :func:`kwplot.autompl` |
| 32 | +
|
| 33 | + References: |
| 34 | + https://gitlab.kitware.com/computer-vision/kwplot/-/blob/main/kwplot/auto_backends.py#L98 |
| 35 | + """ |
| 36 | + import ubelt as ub |
| 37 | + import matplotlib as mpl |
| 38 | + interactive = False |
| 39 | + if ub.modname_to_modpath('PyQt5'): |
| 40 | + # Try to use PyQt Backend |
| 41 | + mpl.use('Qt5Agg') |
| 42 | + try: |
| 43 | + __IPYTHON__ |
| 44 | + except NameError: |
| 45 | + pass |
| 46 | + else: |
| 47 | + import IPython |
| 48 | + ipython = IPython.get_ipython() |
| 49 | + ipython.magic('pylab qt5 --no-import-all') |
| 50 | + interactive = True |
| 51 | + return interactive |
| 52 | + |
| 53 | + |
| 54 | +def benchmark(): |
| 55 | + import ubelt as ub |
| 56 | + import pandas as pd |
| 57 | + import timerit |
| 58 | + import numpy as np |
| 59 | + import lark |
| 60 | + import lark_cython |
| 61 | + |
| 62 | + grammar_fpath = ub.Path(lark.__file__).parent / 'grammars/lark.lark' |
| 63 | + grammar_text = grammar_fpath.read_text() |
| 64 | + |
| 65 | + cython_parser = lark.Lark(grammar_text, start='start', parser='lalr', _plugins=lark_cython.plugins) |
| 66 | + python_parser = lark.Lark(grammar_text, start='start', parser='lalr') |
| 67 | + |
| 68 | + def parse_cython(text): |
| 69 | + cython_parser.parse(text) |
| 70 | + |
| 71 | + def parse_python(text): |
| 72 | + python_parser.parse(text) |
| 73 | + |
| 74 | + method_lut = locals() # can populate this some other way |
| 75 | + |
| 76 | + # Change params here to modify number of trials |
| 77 | + ti = timerit.Timerit(300, bestof=10, verbose=1) |
| 78 | + |
| 79 | + # if True, record every trail run and show variance in seaborn |
| 80 | + # if False, use the standard timerit min/mean measures |
| 81 | + RECORD_ALL = True |
| 82 | + |
| 83 | + # These are the parameters that we benchmark over |
| 84 | + basis = { |
| 85 | + 'method': [ |
| 86 | + 'parse_python', |
| 87 | + 'parse_cython', |
| 88 | + ], |
| 89 | + 'size': np.linspace(16, 512, 8).round().astype(int), |
| 90 | + } |
| 91 | + xlabel = 'size' |
| 92 | + # Set these to param labels that directly transfer to method kwargs |
| 93 | + kw_labels = [] |
| 94 | + # Set these to empty lists if they are not used |
| 95 | + group_labels = { |
| 96 | + 'style': [], |
| 97 | + 'size': [], |
| 98 | + } |
| 99 | + group_labels['hue'] = list( |
| 100 | + (ub.oset(basis) - {xlabel}) - set.union(*map(set, group_labels.values()))) |
| 101 | + grid_iter = list(ub.named_product(basis)) |
| 102 | + |
| 103 | + # For each variation of your experiment, create a row. |
| 104 | + rows = [] |
| 105 | + for params in grid_iter: |
| 106 | + group_keys = {} |
| 107 | + for gname, labels in group_labels.items(): |
| 108 | + group_keys[gname + '_key'] = ub.repr2( |
| 109 | + ub.dict_isect(params, labels), compact=1, si=1) |
| 110 | + key = ub.repr2(params, compact=1, si=1) |
| 111 | + # Make any modifications you need to compute input kwargs for each |
| 112 | + # method here. |
| 113 | + kwargs = ub.dict_isect(params.copy(), kw_labels) |
| 114 | + kwargs['text'] = random_lark_grammar(params['size']) |
| 115 | + method = method_lut[params['method']] |
| 116 | + # Timerit will run some user-specified number of loops. |
| 117 | + # and compute time stats with similar methodology to timeit |
| 118 | + for timer in ti.reset(key): |
| 119 | + # Put any setup logic you dont want to time here. |
| 120 | + # ... |
| 121 | + with timer: |
| 122 | + # Put the logic you want to time here |
| 123 | + method(**kwargs) |
| 124 | + if RECORD_ALL: |
| 125 | + # Seaborn will show the variance if this is enabled, otherwise |
| 126 | + # use the robust timerit mean / min times |
| 127 | + chunk_iter = ub.chunks(ti.times, ti.bestof) |
| 128 | + times = list(map(min, chunk_iter)) |
| 129 | + for time in times: |
| 130 | + row = { |
| 131 | + # 'mean': ti.mean(), |
| 132 | + 'time': time, |
| 133 | + 'key': key, |
| 134 | + **group_keys, |
| 135 | + **params, |
| 136 | + } |
| 137 | + rows.append(row) |
| 138 | + else: |
| 139 | + row = { |
| 140 | + 'mean': ti.mean(), |
| 141 | + 'min': ti.min(), |
| 142 | + 'key': key, |
| 143 | + **group_keys, |
| 144 | + **params, |
| 145 | + } |
| 146 | + rows.append(row) |
| 147 | + |
| 148 | + time_key = 'time' if RECORD_ALL else 'min' |
| 149 | + |
| 150 | + # The rows define a long-form pandas data array. |
| 151 | + # Data in long-form makes it very easy to use seaborn. |
| 152 | + data = pd.DataFrame(rows) |
| 153 | + data = data.sort_values(time_key) |
| 154 | + print(data) |
| 155 | + |
| 156 | + if RECORD_ALL: |
| 157 | + # Show the min / mean if we record all |
| 158 | + min_times = data.groupby('key').min().rename({'time': 'min'}, axis=1) |
| 159 | + mean_times = data.groupby('key')[['time']].mean().rename({'time': 'mean'}, axis=1) |
| 160 | + stats_data = pd.concat([min_times, mean_times], axis=1) |
| 161 | + stats_data = stats_data.sort_values('min') |
| 162 | + print('Statistics:') |
| 163 | + print(stats_data) |
| 164 | + |
| 165 | + plot = True |
| 166 | + if plot: |
| 167 | + # import seaborn as sns |
| 168 | + # kwplot autosns works well for IPython and script execution. |
| 169 | + # not sure about notebooks. |
| 170 | + interactive = _autompl_lite() |
| 171 | + import seaborn as sns |
| 172 | + from matplotlib import pyplot as plt |
| 173 | + sns.set() |
| 174 | + |
| 175 | + plotkw = {} |
| 176 | + for gname, labels in group_labels.items(): |
| 177 | + if labels: |
| 178 | + plotkw[gname] = gname + '_key' |
| 179 | + |
| 180 | + # Your variables may change |
| 181 | + fig = plt.figure() |
| 182 | + fig.clf() |
| 183 | + ax = fig.gca() |
| 184 | + sns.lineplot(data=data, x=xlabel, y=time_key, marker='o', ax=ax, **plotkw) |
| 185 | + ax.set_title('Benchmark Python Grammar') |
| 186 | + ax.set_xlabel('Input Size') |
| 187 | + ax.set_ylabel('Time (seconds)') |
| 188 | + # ax.set_xscale('log') |
| 189 | + # ax.set_yscale('log') |
| 190 | + if not interactive: |
| 191 | + plt.show() |
| 192 | + |
| 193 | + |
| 194 | +if __name__ == '__main__': |
| 195 | + """ |
| 196 | + CommandLine: |
| 197 | + python benchmarks/benchmark_lark_parser.py |
| 198 | + """ |
| 199 | + benchmark() |
0 commit comments