@@ -3277,6 +3277,7 @@ def wrapper(self, *args, **kwargs):
3277
3277
@_decorate_agg_method (np .all , commutative = True , long_name = "AND reduction" )
3278
3278
def all (self , * args , ** kwargs ):
3279
3279
"""{signature}
3280
+
3280
3281
Test whether all selected elements evaluate to True.
3281
3282
3282
3283
{parameters}
@@ -3347,6 +3348,7 @@ def all(self, *args, **kwargs):
3347
3348
@_decorate_agg_method (np .all , commutative = True , by_agg = True , long_name = "AND reduction" )
3348
3349
def all_by (self , * args , ** kwargs ):
3349
3350
"""{signature}
3351
+
3350
3352
Test whether all selected elements evaluate to True.
3351
3353
3352
3354
{parameters}
@@ -3414,6 +3416,7 @@ def all_by(self, *args, **kwargs):
3414
3416
@_decorate_agg_method (np .any , commutative = True , long_name = "OR reduction" )
3415
3417
def any (self , * args , ** kwargs ):
3416
3418
"""{signature}
3419
+
3417
3420
Test whether any selected elements evaluate to True.
3418
3421
3419
3422
{parameters}
@@ -3484,6 +3487,7 @@ def any(self, *args, **kwargs):
3484
3487
@_decorate_agg_method (np .any , commutative = True , by_agg = True , long_name = "OR reduction" )
3485
3488
def any_by (self , * args , ** kwargs ):
3486
3489
"""{signature}
3490
+
3487
3491
Test whether any selected elements evaluate to True.
3488
3492
3489
3493
{parameters}
@@ -3553,6 +3557,7 @@ def any_by(self, *args, **kwargs):
3553
3557
@_decorate_agg_method (np .sum , np .nansum , commutative = True , extra_kwargs = ['dtype' ])
3554
3558
def sum (self , * args , ** kwargs ):
3555
3559
"""{signature}
3560
+
3556
3561
Computes the sum of array elements along given axes/groups.
3557
3562
3558
3563
{parameters}
@@ -3617,6 +3622,7 @@ def sum(self, *args, **kwargs):
3617
3622
@_decorate_agg_method (np .sum , np .nansum , commutative = True , by_agg = True , extra_kwargs = ['dtype' ], long_name = "sum" )
3618
3623
def sum_by (self , * args , ** kwargs ):
3619
3624
"""{signature}
3625
+
3620
3626
Computes the sum of array elements for the given axes/groups.
3621
3627
3622
3628
{parameters}
@@ -3679,6 +3685,7 @@ def sum_by(self, *args, **kwargs):
3679
3685
@_decorate_agg_method (np .prod , np_nanprod , commutative = True , extra_kwargs = ['dtype' ], long_name = "product" )
3680
3686
def prod (self , * args , ** kwargs ):
3681
3687
"""{signature}
3688
+
3682
3689
Computes the product of array elements along given axes/groups.
3683
3690
3684
3691
{parameters}
@@ -3744,6 +3751,7 @@ def prod(self, *args, **kwargs):
3744
3751
long_name = "product" )
3745
3752
def prod_by (self , * args , ** kwargs ):
3746
3753
"""{signature}
3754
+
3747
3755
Computes the product of array elements for the given axes/groups.
3748
3756
3749
3757
{parameters}
@@ -3805,6 +3813,7 @@ def prod_by(self, *args, **kwargs):
3805
3813
@_decorate_agg_method (np .min , np .nanmin , commutative = True , long_name = "minimum" , action_verb = "search" )
3806
3814
def min (self , * args , ** kwargs ):
3807
3815
"""{signature}
3816
+
3808
3817
Get minimum of array elements along given axes/groups.
3809
3818
3810
3819
{parameters}
@@ -3868,6 +3877,7 @@ def min(self, *args, **kwargs):
3868
3877
@_decorate_agg_method (np .min , np .nanmin , commutative = True , by_agg = True , long_name = "minimum" , action_verb = "search" )
3869
3878
def min_by (self , * args , ** kwargs ):
3870
3879
"""{signature}
3880
+
3871
3881
Get minimum of array elements for the given axes/groups.
3872
3882
3873
3883
{parameters}
@@ -3928,6 +3938,7 @@ def min_by(self, *args, **kwargs):
3928
3938
@_decorate_agg_method (np .max , np .nanmax , commutative = True , long_name = "maximum" , action_verb = "search" )
3929
3939
def max (self , * args , ** kwargs ):
3930
3940
"""{signature}
3941
+
3931
3942
Get maximum of array elements along given axes/groups.
3932
3943
3933
3944
{parameters}
@@ -3991,6 +4002,7 @@ def max(self, *args, **kwargs):
3991
4002
@_decorate_agg_method (np .max , np .nanmax , commutative = True , by_agg = True , long_name = "maximum" , action_verb = "search" )
3992
4003
def max_by (self , * args , ** kwargs ):
3993
4004
"""{signature}
4005
+
3994
4006
Get maximum of array elements for the given axes/groups.
3995
4007
3996
4008
{parameters}
@@ -4051,6 +4063,7 @@ def max_by(self, *args, **kwargs):
4051
4063
@_decorate_agg_method (np .mean , np .nanmean , commutative = True , extra_kwargs = ['dtype' ])
4052
4064
def mean (self , * args , ** kwargs ):
4053
4065
"""{signature}
4066
+
4054
4067
Computes the arithmetic mean.
4055
4068
4056
4069
{parameters}
@@ -4116,6 +4129,7 @@ def mean(self, *args, **kwargs):
4116
4129
@_decorate_agg_method (np .mean , np .nanmean , commutative = True , by_agg = True , extra_kwargs = ['dtype' ], long_name = "mean" )
4117
4130
def mean_by (self , * args , ** kwargs ):
4118
4131
"""{signature}
4132
+
4119
4133
Computes the arithmetic mean.
4120
4134
4121
4135
{parameters}
@@ -4178,6 +4192,7 @@ def mean_by(self, *args, **kwargs):
4178
4192
@_decorate_agg_method (np .median , np .nanmedian , commutative = True )
4179
4193
def median (self , * args , ** kwargs ):
4180
4194
"""{signature}
4195
+
4181
4196
Computes the arithmetic median.
4182
4197
4183
4198
{parameters}
@@ -4247,6 +4262,7 @@ def median(self, *args, **kwargs):
4247
4262
@_decorate_agg_method (np .median , np .nanmedian , commutative = True , by_agg = True , long_name = "mediane" )
4248
4263
def median_by (self , * args , ** kwargs ):
4249
4264
"""{signature}
4265
+
4250
4266
Computes the arithmetic median.
4251
4267
4252
4268
{parameters}
@@ -4317,6 +4333,7 @@ def median_by(self, *args, **kwargs):
4317
4333
# signature as other aggregate functions (extra argument)
4318
4334
def percentile (self , q , * args , ** kwargs ):
4319
4335
"""{signature}
4336
+
4320
4337
Computes the qth percentile of the data along the specified axis.
4321
4338
4322
4339
{parameters}
@@ -4404,6 +4421,7 @@ def percentile(self, q, *args, **kwargs):
4404
4421
4405
4422
def percentile_by (self , q , * args , ** kwargs ):
4406
4423
"""{signature}
4424
+
4407
4425
Computes the qth percentile of the data for the specified axis.
4408
4426
4409
4427
{parameters}
@@ -4489,6 +4507,7 @@ def percentile_by(self, q, *args, **kwargs):
4489
4507
4490
4508
def ptp (self , * args , ** kwargs ):
4491
4509
"""{signature}
4510
+
4492
4511
Returns the range of values (maximum - minimum).
4493
4512
4494
4513
The name of the function comes from the acronym for ‘peak to peak’.
@@ -4553,6 +4572,7 @@ def ptp(self, *args, **kwargs):
4553
4572
@_decorate_agg_method (np .var , np .nanvar , extra_kwargs = ['dtype' , 'ddof' ], long_name = "variance" )
4554
4573
def var (self , * args , ** kwargs ):
4555
4574
"""{signature}
4575
+
4556
4576
Computes the unbiased variance.
4557
4577
4558
4578
Normalized by N-1 by default. This can be changed using the ddof argument.
@@ -4616,6 +4636,7 @@ def var(self, *args, **kwargs):
4616
4636
@_decorate_agg_method (np .var , np .nanvar , by_agg = True , extra_kwargs = ['dtype' , 'ddof' ], long_name = "variance" )
4617
4637
def var_by (self , * args , ** kwargs ):
4618
4638
"""{signature}
4639
+
4619
4640
Computes the unbiased variance.
4620
4641
4621
4642
Normalized by N-1 by default. This can be changed using the ddof argument.
@@ -4679,6 +4700,7 @@ def var_by(self, *args, **kwargs):
4679
4700
@_decorate_agg_method (np .std , np .nanstd , extra_kwargs = ['dtype' , 'ddof' ], long_name = "standard deviation" )
4680
4701
def std (self , * args , ** kwargs ):
4681
4702
"""{signature}
4703
+
4682
4704
Computes the sample standard deviation.
4683
4705
4684
4706
Normalized by N-1 by default. This can be changed using the ddof argument.
@@ -4743,6 +4765,7 @@ def std(self, *args, **kwargs):
4743
4765
long_name = "standard deviation" )
4744
4766
def std_by (self , * args , ** kwargs ):
4745
4767
"""{signature}
4768
+
4746
4769
Computes the sample standard deviation.
4747
4770
4748
4771
Normalized by N-1 by default. This can be changed using the ddof argument.
@@ -5472,10 +5495,10 @@ def append(self, axis, value, label=None):
5472
5495
Parameters
5473
5496
----------
5474
5497
axis : axis reference
5475
- Axis along which to append input array ( `value`) .
5498
+ Axis along which to append `value`.
5476
5499
value : scalar or LArray
5477
5500
Scalar or array with compatible axes.
5478
- label : str , optional
5501
+ label : scalar , optional
5479
5502
Label for the new item in axis
5480
5503
5481
5504
Returns
@@ -5906,6 +5929,8 @@ def drop(self, labels=None):
5906
5929
def transpose (self , * args ):
5907
5930
"""Reorder axes.
5908
5931
5932
+ By default, reverse axes, otherwise permute the axes according to the list given as argument.
5933
+
5909
5934
Parameters
5910
5935
----------
5911
5936
*args
@@ -6688,7 +6713,7 @@ def diff(self, axis=-1, d=1, n=1, label='upper'):
6688
6713
6689
6714
Returns
6690
6715
-------
6691
- LArray :
6716
+ LArray
6692
6717
The n-th order differences. The shape of the output is the same as `a` except for `axis` which is smaller
6693
6718
by `n` * `d`.
6694
6719
0 commit comments