From 0c7811578f85d790bfd760be01f3e0de85a71e94 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 15:43:24 -0400
Subject: [PATCH 01/12] Updating docs.mcp-agent.com homepage
- updating quick start code snippet
- adding hyperlinks for examples
---
docs/index.mdx | 28 ++++++++++++++++++----------
1 file changed, 18 insertions(+), 10 deletions(-)
diff --git a/docs/index.mdx b/docs/index.mdx
index f6dd03381..8b88e1ea6 100644
--- a/docs/index.mdx
+++ b/docs/index.mdx
@@ -22,6 +22,7 @@ The framework handles:
- Connect to any MCP server via stdio, SSE, WebSocket, or HTTP
- Access tools, resources, prompts, and file system roots
- Automatic tool discovery and integration
+- Sampling, elicitation, and notifications
### Agent Patterns
Implementation of all patterns from Anthropic's research:
@@ -48,7 +49,7 @@ Works with:
## Quick Example
-```python
+```python main.py
import asyncio
from mcp_agent.app import MCPApp
from mcp_agent.agents.agent import Agent
@@ -56,8 +57,14 @@ from mcp_agent.workflows.llm.augmented_llm_openai import OpenAIAugmentedLLM
app = MCPApp(name="example_agent")
-async def main():
+@app.tool
+async def research()->str:
+ '''
+ Research quatum computing function / tool call
+ '''
+ result=""
async with app.run() as mcp_agent_app:
+
# Create agent with MCP server access
agent = Agent(
name="researcher",
@@ -76,9 +83,10 @@ async def main():
# Agent can now use MCP server tools
result = await llm.generate_str("Research quantum computing")
print(result)
+ return result
if __name__ == "__main__":
- asyncio.run(main())
+ asyncio.run(research())
```
## Example Applications
@@ -135,7 +143,7 @@ uv add "mcp-agent[openai,anthropic,azure,bedrock,google]"
mcp-agent uses two configuration files:
**mcp_agent.config.yaml** - Application configuration:
-```yaml
+```yaml mcp_agent.config.yaml
execution_engine: asyncio # or temporal
logger:
transports: [console]
@@ -155,7 +163,7 @@ openai:
```
**mcp_agent.secrets.yaml** - API keys and secrets:
-```yaml
+```yaml mcp_agent.secrets.yaml
openai:
api_key: "sk-..."
```
@@ -175,14 +183,14 @@ your-project/
### Local Development
Run agents locally with asyncio execution engine for rapid development.
-### Production with Temporal
+### [Production with Temporal](advanced/temporal)
Use Temporal for durable execution, automatic retries, and workflow management.
-### As MCP Server
+### [As a MCP Server](cloud/agent-server)
Expose your agents as MCP servers that can be used by Claude Desktop, VS Code, or other MCP clients.
-### MCP Agent Cloud
-Deploy agents to managed cloud infrastructure with one command (coming soon).
+### [MCP Agent Cloud](cloud/overview)
+Deploy agents to managed cloud infrastructure with one command.
## Examples
@@ -206,4 +214,4 @@ The [examples directory](https://github.com/lastmile-ai/mcp-agent/tree/main/exam
- [Model Context Protocol](https://modelcontextprotocol.io) - MCP specification
- [Building Effective Agents](https://www.anthropic.com/research/building-effective-agents) - Anthropic's guide
- [GitHub Repository](https://github.com/lastmile-ai/mcp-agent) - Source code
-- [Discord Community](https://lmai.link/discord/mcp-agent) - Get help and discuss
\ No newline at end of file
+- [Discord Community](https://lmai.link/discord/mcp-agent) - Get help and discuss
From a1430ea609664d17372ed2ccc1595435c2b57dff Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 16:28:30 -0400
Subject: [PATCH 02/12] Reducing example videos, updating static cover
screenshot to video
---
docs/index.mdx | 21 ++++-----------------
1 file changed, 4 insertions(+), 17 deletions(-)
diff --git a/docs/index.mdx b/docs/index.mdx
index 8b88e1ea6..e3941f84c 100644
--- a/docs/index.mdx
+++ b/docs/index.mdx
@@ -3,7 +3,10 @@ title: Introduction
description: "Framework for building AI agents using Model Context Protocol"
---
-
+
## Overview
@@ -90,22 +93,6 @@ if __name__ == "__main__":
```
## Example Applications
-
-### Agent as MCP Server Demo
-
-
-### Workflow Orchestration
-
-
-### Swarm Intelligence Pattern
-
-
Explore working examples in the [examples directory](https://github.com/lastmile-ai/mcp-agent/tree/main/examples):
- **Agent as MCP Server**: Deploy agents as MCP servers for Claude Desktop integration ([examples/mcp_agent_server](https://github.com/lastmile-ai/mcp-agent/tree/main/examples/mcp_agent_server))
From 627907653c10069afca5b8e4cca2006931ab1244 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 16:52:58 -0400
Subject: [PATCH 03/12] Updating cloud secrets management
---
docs/configuration.mdx | 9 +++++----
1 file changed, 5 insertions(+), 4 deletions(-)
diff --git a/docs/configuration.mdx b/docs/configuration.mdx
index e1a08b562..213d7ebf2 100644
--- a/docs/configuration.mdx
+++ b/docs/configuration.mdx
@@ -692,13 +692,14 @@ Keep sensitive configuration in separate secrets files:
- For cloud deployments, use secret management services:
+ For mcp-agent cloud deployments, use mcp-agent cloud's secret management:
```yaml
- # Reference secrets from cloud providers
openai:
- api_key: "${OPENAI_API_KEY}" # From AWS Secrets Manager, etc.
+ api_key: !developer_secret
```
+
+ Mark which secrets you, as the developer, want to keep safe and secure.s
@@ -1269,4 +1270,4 @@ usage_telemetry: UsageTelemetrySettings
See real configuration examples
-
\ No newline at end of file
+
From 459a4aff156cf7ea85c6e929508af6c110cf3e02 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 16:56:56 -0400
Subject: [PATCH 04/12] Updating MCP Primitive Support Matrix with Sampling
---
docs/concepts/mcp-primitives.mdx | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/docs/concepts/mcp-primitives.mdx b/docs/concepts/mcp-primitives.mdx
index 1b2f151d1..026e7f1e6 100644
--- a/docs/concepts/mcp-primitives.mdx
+++ b/docs/concepts/mcp-primitives.mdx
@@ -356,7 +356,7 @@ mcp-agent supports authentication for MCP servers:
| Prompts | ✅ | ✅ | ✅ | ✅ | Fully Supported |
| Roots | ✅ | ✅ | ✅ | ✅ | Fully Supported |
| Elicitation | ✅ | ✅ | ✅ | ✅ | Fully Supported |
-| Sampling | 🚧 | 🚧 | 🚧 | 🚧 | Coming Soon |
+| Sampling | ✅ | ✅ | ✅ | ✅ | Coming Soon |
## Complete Examples
@@ -373,4 +373,4 @@ mcp-agent supports authentication for MCP servers:
Official MCP specification
-
\ No newline at end of file
+
From c292eea3e44fd1ae544d1b6b345c19c17bcead75 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 18:30:03 -0400
Subject: [PATCH 05/12] adding snippets for mcp-agent cloud and reversing tools
via decorator order
---
docs/cloud/agent-server.mdx | 104 +++++++++++++++++++++++-------------
1 file changed, 67 insertions(+), 37 deletions(-)
diff --git a/docs/cloud/agent-server.mdx b/docs/cloud/agent-server.mdx
index 008591bbf..322edb7c6 100644
--- a/docs/cloud/agent-server.mdx
+++ b/docs/cloud/agent-server.mdx
@@ -17,7 +17,41 @@ When you expose an agent as an MCP server, the framework:
3. Provides standard workflow management tools
4. Handles protocol communication
-## Default MCP Tools
+## Tools via Decorators
+
+### @app.tool - Synchronous Tools
+
+Synchronous tools execute immediately and return results:
+
+```python
+@app.tool
+def calculate_sum(a: int, b: int) -> int:
+ """Add two numbers together."""
+ return a + b
+```
+
+This creates a single MCP tool `calculate_sum` that executes synchronously.
+
+### @app.async_tool - Asynchronous Tools
+
+Asynchronous tools run as durable workflows:
+
+```python
+@app.async_tool
+async def research_topic(topic: str) -> str:
+ """Research a topic using multiple sources."""
+ # Long-running research operation
+ results = await gather_information(topic)
+ return results
+```
+
+This creates:
+- `research_topic`: Starts the workflow
+- Status tracking via `workflows-get_status`
+- Cancellation via `workflows-cancel`
+
+
+## Built-in MCP Tools
Every agent server automatically provides these workflow management tools:
@@ -79,39 +113,6 @@ Cancels a running workflow instance.
- `run_id`: The run instance ID
- `workflow_name`: Workflow identifier
-## Custom Tools via Decorators
-
-### @app.tool - Synchronous Tools
-
-Synchronous tools execute immediately and return results:
-
-```python
-@app.tool
-def calculate_sum(a: int, b: int) -> int:
- """Add two numbers together."""
- return a + b
-```
-
-This creates a single MCP tool `calculate_sum` that executes synchronously.
-
-### @app.async_tool - Asynchronous Tools
-
-Asynchronous tools run as durable workflows:
-
-```python
-@app.async_tool
-async def research_topic(topic: str) -> str:
- """Research a topic using multiple sources."""
- # Long-running research operation
- results = await gather_information(topic)
- return results
-```
-
-This creates:
-- `research_topic`: Starts the workflow
-- Status tracking via `workflows-get_status`
-- Cancellation via `workflows-cancel`
-
## Server Configuration
### Basic Setup
@@ -145,13 +146,25 @@ uv run mcp-agent serve --app my_agent:app
uv run mcp-agent serve --app my_agent:app --transport sse
```
+#### Deploying to **mcp-agent cloud**
+Update your secrets
+```yaml mcp_agent.secrets.yaml
+openai:
+ api_key: !developer_secret
+```
+
+```bash
+uv run mcp-agent login
+uv run mcp-agent deploy my_agent
+```
+
## Client Configuration
### Claude Desktop
-Add to `claude_desktop_config.json`:
+For local mcp servers, add to `claude_desktop_config.json`:
-```json
+```json claude_desktop_config.json
{
"mcpServers": {
"my-agent": {
@@ -162,6 +175,23 @@ Add to `claude_desktop_config.json`:
}
```
+For **mcp-agent cloud**, add to `claude_desktop_config.json`:
+
+```json claude_desktop_config.json
+"my_agent": {
+ "command": "/path/to/npx",
+ "args": [
+ "mcp-remote",
+ "https://[your-agent-server-id].deployments.mcp-agent-cloud.lastmileai.dev/sse",
+ "--header",
+ "Authorization: Bearer ${BEARER_TOKEN}"
+ ],
+ "env": {
+ "BEARER_TOKEN": "your-mcp-agent-cloud-api-token"
+ }
+}
+```
+
### Programmatic Access
```python
@@ -301,4 +331,4 @@ def process_data(
- [Configuration Guide](/configuration)
- [Workflow Patterns](/workflows/overview)
-- [Cloud Deployment](/cloud/getting-started)
\ No newline at end of file
+- [Cloud Deployment](/cloud/getting-started)
From 424cba8e81855f99a077131dbfbabf54a1d3fddb Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 18:30:51 -0400
Subject: [PATCH 06/12] lowercase mcp-agent cloud
---
docs/index.mdx | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/docs/index.mdx b/docs/index.mdx
index e3941f84c..4cfeab462 100644
--- a/docs/index.mdx
+++ b/docs/index.mdx
@@ -176,7 +176,7 @@ Use Temporal for durable execution, automatic retries, and workflow management.
### [As a MCP Server](cloud/agent-server)
Expose your agents as MCP servers that can be used by Claude Desktop, VS Code, or other MCP clients.
-### [MCP Agent Cloud](cloud/overview)
+### [mcp-agent cloud](cloud/overview)
Deploy agents to managed cloud infrastructure with one command.
## Examples
From a5835bf75e5144c2ad4fed60fbaf46d853593b61 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 18:32:11 -0400
Subject: [PATCH 07/12] lowercase mcp-agent cloud in TOC
---
docs/docs.json | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/docs/docs.json b/docs/docs.json
index 16d0675fc..339578576 100644
--- a/docs/docs.json
+++ b/docs/docs.json
@@ -68,7 +68,7 @@
]
},
{
- "group": "MCP Agent Cloud",
+ "group": "mcp-agent cloud",
"pages": [
"cloud/overview",
"cloud/getting-started",
@@ -168,4 +168,4 @@
}
]
}
-}
\ No newline at end of file
+}
From cc321cd57d9106f7208e81ed006e7f835d2d2eb0 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 19:41:05 -0400
Subject: [PATCH 08/12] updating the introduction and overview page
---
docs/cloud/overview.mdx | 199 +++++++++++++++-------------------------
1 file changed, 75 insertions(+), 124 deletions(-)
diff --git a/docs/cloud/overview.mdx b/docs/cloud/overview.mdx
index 925fc6c39..ce84fc681 100644
--- a/docs/cloud/overview.mdx
+++ b/docs/cloud/overview.mdx
@@ -1,11 +1,11 @@
---
-title: MCP Agent Cloud
-description: "Deploy and manage AI agents as MCP servers"
+title: mcp-agent cloud
+description: "[In beta] Deploy and manage AI agents as MCP servers"
---
## Overview
-MCP Agent Cloud deploys your agents as MCP servers, where agent workflows become long-running MCP tools executed in a durable workflow orchestration engine (Temporal). This architecture enables:
+**mcp-agent cloud** deploys your agents as MCP servers, where agent workflows become long-running MCP tools executed in a durable workflow orchestration engine (Temporal). This architecture enables:
- **Agents as MCP Servers**: Your agents are exposed as standard MCP servers that any MCP client can connect to
- **Workflows as Durable Tools**: Agent workflows are exposed as MCP tools that run durably via Temporal
@@ -16,147 +16,98 @@ MCP Agent Cloud deploys your agents as MCP servers, where agent workflows become
- **Agent Deployment**: Deploy agents as MCP servers accessible via HTTP/WebSocket
- **Temporal Integration**: Durable workflow execution with automatic retries
- **Secrets Management**: Secure storage and injection of API keys
-- **Multi-Region Support**: Deploy to different regions for lower latency
- **Monitoring**: Real-time logs, metrics, and workflow tracking
-## Deployment Process
+## Preparing your mcp-agent app as a server
-1. Write your agent using mcp-agent framework
-2. Configure deployment settings
-3. Deploy with `mcp-agent deploy`
-4. Access your agent via MCP protocol
+1. Double check that your entrypoint python file is named `main.py`
-## Architecture
+When packaging your mcp-agent app for the cloud, our CLI will be searching for `main.py`. The entire directory will be deployed, so you can reference other files and upload other assets.
-### Core Concept: Agents as MCP Servers
+2. Make sure you have either a `pyproject.toml` or a `requirements.txt` file in your app directory.
-When you deploy an agent to MCP Agent Cloud:
+3. Mark your functions that you'd like to be tool calls with the `@app.tool` decorators
-1. **Your agent becomes an MCP server** - Accessible via standard MCP protocol
-2. **Workflows become MCP tools** - Each workflow is exposed as a tool that MCP clients can invoke
-3. **Execution is durable** - Workflows run on Temporal, surviving failures and restarts
-4. **Tools are long-running** - Unlike traditional tools, agent workflows can run for hours/days/weeks
-
-### How It Works
-
-```yaml
+```python main.py
# Your agent definition
-@app.workflow
-class ResearchWorkflow:
- async def run(self, topic: str):
- # Long-running research task
- return results
+@app.tool
+async def research(query) -> str:
+ # this is where your agent logic exists (functions and calls)
+ return results
# Becomes an MCP tool when deployed:
-# Tool: "workflows-ResearchWorkflow-run"
-# Returns: workflow_id and run_id for tracking
-# Status: Check via "workflows-get_status"
-# Cancel: Use "workflows-cancel"
+# Tool: "research"
+```
+
+4. Mark your secrets that you'd like to safely secure for deployment
+
+```yaml mcp_agent.secrets.yaml
+openai:
+ api_key: !developer_secret
```
-### Components
-
-- **API Gateway**: Exposes agents as MCP servers (SSE/HTTP endpoints)
-- **Agent Runtime**: Containerized execution environment for your agent code
-- **Temporal Cluster**: Durable workflow orchestration engine
- - Workflows survive crashes and restarts
- - Automatic retries with exponential backoff
- - Pause/resume capabilities for human-in-the-loop
- - Complete execution history and replay debugging
-- **Vault**: Secure secrets management
-- **Monitoring Stack**: OpenTelemetry-based observability
-
-### Why Temporal for Agent Workflows?
-
-Agent workflows are fundamentally different from simple tool calls:
-- They can run for extended periods (hours/days)
-- They need to survive infrastructure failures
-- They require pause/resume for human approval
-- They benefit from automatic retries and error handling
-
-Temporal provides all these capabilities out-of-the-box, making your agents production-ready.
-
-## Platform Capabilities
-
-### Deployment
-- One-command deployment via CLI
-- Automatic versioning
-- Blue-green deployments
-- Regional deployment options
-- Custom domains
-
-### Workflow Management
-- Start, pause, resume, cancel operations
-- Cron-based scheduling
-- Batch operations
-- Priority queues
-- Rate limiting
-
-### Observability
-- Real-time workflow monitoring
-- Structured logging
-- OpenTelemetry tracing
-- Custom metrics
-- Workflow health checks
-
-### Security
-- HashiCorp Vault integration
-- End-to-end encryption
-- Role-based access control
-- Audit logging
-
-### Integrations
-- MCP client compatibility (Claude Desktop, VS Code)
-- Webhook notifications
-- GitHub Actions
-- Custom MCP servers
-- Monitoring exports (Datadog, Grafana)
-
-## Use Cases
-
-- **Customer Support**: Deploy agents for handling support tickets
-- **Data Analysis**: Process and analyze business data
-- **Documentation**: Generate and maintain documentation
-- **Code Review**: Automate code review processes
-- **Multi-Agent Systems**: Coordinate multiple specialized agents
-- **RAG Applications**: Retrieval-augmented generation workflows
-- **Automation**: Business process automation
-- **Integration**: Connect AI to existing systems
-
-## Technical Specifications
-
-- **Protocol**: Native MCP (Model Context Protocol)
-- **Orchestration**: Temporal workflow engine
-- **Secrets**: HashiCorp Vault
-- **Deployment**: Containerized with Kubernetes
-- **Monitoring**: OpenTelemetry-based
-- **Languages**: Python (primary), JavaScript/TypeScript support planned
-- **Regions**: US East, US West, EU West (more coming)
-
-## Getting Started
-
-### Prerequisites
-
-1. mcp-agent installed (`uv tool install mcp-agent`)
-2. MCP Agent Cloud account
-3. API keys configured
-
-### Quick Start
+## Deploying your mcp-agent app
+
+1. Login into mcp-agent cloud to get your `api key`
```bash
-# Install CLI
-uv tool install mcp-agent
+uv run mcp-agent login`
+```
+
+2. Deploy your app
-# Configure credentials
-mcp-agent configure
+```bash
+uv run mcp-agent deploy my-first-agent
+```
-# Deploy your agent
-mcp-agent deploy --app my_agent:app
+## Connect to your deployed mcp-agent server
+
+### Claude Desktop integration
+
+Configure Claude Desktop to access your agent server
+
+```json .claude-desktop/config.json
+"my-agent-server": {
+ "command": "/path/to/npx",
+ "args": [
+ "mcp-remote",
+ "https://[your-agent-server-id].deployments.mcp-agent-cloud.lastmileai.dev/sse",
+ "--header",
+ "Authorization: Bearer ${BEARER_TOKEN}"
+ ],
+ "env": {
+ "BEARER_TOKEN": "your-mcp-agent-cloud-api-token"
+ }
+}
```
+### MCP Inspector
+
+Run your local MCP Inspector
+```bash
+npx @modelcontextprotocol/inspector
+```
+
+Connect with the following settings
+| Setting | Value |
+|---|---|
+| *Transport Type* | *SSE* |
+| *SSE* | *https://[your-agent-server-id].deployments.mcp-agent-cloud.lastmileai.dev/sse* |
+| *Header Name* | *Authorization* |
+| *Bearer Token* | *your-mcp-agent-cloud-api-token* |
+
+
+## Example Use Cases
+
+Explore use cases in the [examples directory](https://github.com/lastmile-ai/mcp-agent/tree/main/examples):
+- [**Github to Slack agent**](https://github.com/lastmile-ai/mcp-agent/tree/main/examples/usecases/mcp_github_to_slack_agent): Deploy an agent that will give you and your team a daily report of high-pri PRs and issues from github.
+- [**Research agent**](https://github.com/lastmile-ai/mcp-agent/tree/main/examples/usecases/mcp_researcher): Deploy a research agent server to do a LLM-based research across the internet.
+- [**Financial analyzer agent**](https://github.com/lastmile-ai/mcp-agent/tree/main/examples/usecases/mcp_financial_analyzer): Deploy a financial analyzer agent to research information about a specific company
+
+
## Next Steps
- [Getting Started Guide](/cloud/getting-started)
- [CLI Reference](/cloud/cli-reference)
- [Agent Server Documentation](/cloud/agent-server)
-- [Examples](https://github.com/lastmile-ai/mcp-agent/tree/main/examples)
\ No newline at end of file
+- [Examples](https://github.com/lastmile-ai/mcp-agent/tree/main/examples)
From ee763fa6d70c794a1b674ce62febbd059b4e462f Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 19:41:27 -0400
Subject: [PATCH 09/12] updating the agent server with mcp-agent cloud
From d01c7e20bffadf56c29e9cf21157704db80d21a3 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 19:41:54 -0400
Subject: [PATCH 10/12] Update getting-started.mdx
---
docs/cloud/getting-started.mdx | 21 +++++++++++----------
1 file changed, 11 insertions(+), 10 deletions(-)
diff --git a/docs/cloud/getting-started.mdx b/docs/cloud/getting-started.mdx
index 1d78d4f07..22b025afd 100644
--- a/docs/cloud/getting-started.mdx
+++ b/docs/cloud/getting-started.mdx
@@ -1,10 +1,10 @@
---
-title: Getting Started with MCP Agent Cloud
+title: Getting Started with mcp-agent cloud
description: "Deploy your first agent to the cloud in under 5 minutes"
---
- MCP Agent Cloud is currently in open beta. Follow the instructions below to get started. For feedback, issues and feature requests, visit https://github.com/lastmile-ai/mcp-agent/issues or join our Discord at https://lmai.link/discord/mcp-agent.
+ mcp-agent cloud is currently in open beta. Follow the instructions below to get started. For feedback, issues and feature requests, visit our [github issues](https://github.com/lastmile-ai/mcp-agent/issues) or join [our Discord](https://lmai.link/discord/mcp-agent).
## Prerequisites
@@ -31,7 +31,7 @@ Before you begin, make sure you have:
- Log in to MCP Agent Cloud:
+ Log in to **mcp-agent cloud**:
```bash
mcp-agent login
@@ -44,7 +44,7 @@ Before you begin, make sure you have:
Ensure your project has the required configuration files:
```yaml mcp_agent.config.yaml
- execution_engine: temporal # Cloud uses Temporal
+ execution_engine: temporal
logger:
transports: [console]
level: info
@@ -61,7 +61,9 @@ Before you begin, make sure you have:
default_model: gpt-4o
```
- > [!IMPORTANT] Swap your api_key with !developer_secret to mark what keys will be saved as secrets within mcp-agent cloud.
+
+ Swap your api_key with !developer_secret to mark what keys will be saved as secrets within mcp-agent cloud.
+
```yaml mcp_agent.secrets.yaml
openai:
@@ -81,8 +83,8 @@ Before you begin, make sure you have:
The deployment process will:
1. Check for existing app with this name or create a new one
- 2. Process your secrets file (transforming !developer_secret tags to secure handles)
- 3. Bundle and upload your code using Wrangler
+ 2. Process your secrets file (transforming `!developer_secret` tags to secure handles)
+ 3. Bundle and upload your code
4. Deploy to MCP Agent Cloud's managed infrastructure
You'll see output like:
@@ -224,7 +226,7 @@ Your agent is now available as an MCP server. Here's how to use it:
Then add to your Claude Desktop config (`~/.claude-desktop/config.json`):
- ```json
+ ```json .claude-desktop/config.json
{
"servers": {
"web-summarizer": {
@@ -334,8 +336,7 @@ MCP_API_KEY="your-key" mcp-agent deploy my-agent
MCP Agent Cloud securely handles secrets through the `mcp_agent.secrets.yaml` file:
-```yaml
-# mcp_agent.secrets.yaml
+```yaml mcp_agent.secrets.yaml
openai:
api_key: !developer_secret # Will be stored securely
From bc7312644924bbaf4e69db47d587a10136599415 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 19:44:07 -0400
Subject: [PATCH 11/12] Update deploying-mcp-servers.mdx
---
docs/cloud/deploying-mcp-servers.mdx | 15 +++++++--------
1 file changed, 7 insertions(+), 8 deletions(-)
diff --git a/docs/cloud/deploying-mcp-servers.mdx b/docs/cloud/deploying-mcp-servers.mdx
index 9b8ec2143..a31cafa7e 100644
--- a/docs/cloud/deploying-mcp-servers.mdx
+++ b/docs/cloud/deploying-mcp-servers.mdx
@@ -5,9 +5,9 @@ description: "Deploy standard MCP servers to MCP Agent Cloud infrastructure"
## Overview
-MCP Agent Cloud can deploy both AI agents **and** standard MCP servers. Since agents deployed to MCP Agent Cloud are exposed as MCP servers themselves, the platform naturally supports deploying any MCP-compatible server implementation.
+**mcp-agent cloud** can deploy both AI agents **and** standard MCP servers. Since agents deployed to **mcp-agent cloud** are exposed as MCP servers themselves, the platform naturally supports deploying any MCP-compatible server implementation.
-This means you can use MCP Agent Cloud to:
+This means you can use **mcp-agent cloud** to:
- Deploy regular MCP servers built with FastMCP or other frameworks
- Host tool servers that don't use AI workflows
- Deploy resource servers for data access
@@ -44,7 +44,7 @@ async def current_weather_resource():
"""Provide current weather data."""
return {"temperature": 72, "condition": "sunny"}
-# Deploy with MCP Agent Cloud
+# Deploy with mcp-agent cloud
# mcp-agent deploy my-weather-server
```
@@ -168,7 +168,7 @@ async def create_ticket(title: str, description: str) -> dict:
The deployment process is identical whether you're deploying a simple MCP server or a full agent:
```bash
-# 1. Authenticate with MCP Agent Cloud
+# 1. Authenticate with mcp-agent cloud
mcp-agent cloud auth login
# 2. Deploy your server
@@ -181,18 +181,17 @@ mcp-agent cloud servers describe
mcp-agent configure --client claude
```
-## Benefits of Using MCP Agent Cloud
+## Benefits of Using **mcp-agent cloud**
-Even for simple MCP servers, MCP Agent Cloud provides:
+Even for simple MCP servers, **mcp-agent cloud** provides:
### Infrastructure Management
- Automatic SSL/TLS termination
- Load balancing and auto-scaling
-- Regional deployment options
- High availability
### Security
-- Secure secrets management via Vault
+- Secure secrets management
- Authentication and authorization
- End-to-end encryption
- Audit logging
From 0903d7bc1baf6c8d5b7bf14bb216b1845f3349f6 Mon Sep 17 00:00:00 2001
From: Andrew Hoh <129882602+andrew-lastmile@users.noreply.github.com>
Date: Mon, 15 Sep 2025 20:12:06 -0400
Subject: [PATCH 12/12] Update docs/cloud/overview.mdx
Co-authored-by: graphite-app[bot] <96075541+graphite-app[bot]@users.noreply.github.com>
---
docs/cloud/overview.mdx | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/docs/cloud/overview.mdx b/docs/cloud/overview.mdx
index ce84fc681..1306fa527 100644
--- a/docs/cloud/overview.mdx
+++ b/docs/cloud/overview.mdx
@@ -51,7 +51,7 @@ openai:
1. Login into mcp-agent cloud to get your `api key`
```bash
-uv run mcp-agent login`
+uv run mcp-agent login
```
2. Deploy your app