|
| 1 | +""" |
| 2 | +This test suite exists for the maintainers currently. It's not run in our CI at the moment. |
| 3 | +
|
| 4 | +Once attention backends become more mature, we can consider including this in our CI. |
| 5 | +
|
| 6 | +To run this test suite: |
| 7 | +
|
| 8 | +```bash |
| 9 | +export RUN_ATTENTION_BACKEND_TESTS=yes |
| 10 | +export DIFFUSERS_ENABLE_HUB_KERNELS=yes |
| 11 | +
|
| 12 | +pytest tests/others/test_attention_backends.py |
| 13 | +``` |
| 14 | +
|
| 15 | +Tests were conducted on an H100 with PyTorch 2.8.0 (CUDA 12.9). Slices for the compilation tests in |
| 16 | +"native" variants were obtained with a torch nightly version (2.10.0.dev20250924+cu128). |
| 17 | +""" |
| 18 | + |
| 19 | +import os |
| 20 | + |
| 21 | +import pytest |
| 22 | +import torch |
| 23 | + |
| 24 | + |
| 25 | +pytestmark = pytest.mark.skipif( |
| 26 | + os.getenv("RUN_ATTENTION_BACKEND_TESTS", "false") == "false", reason="Feature not mature enough." |
| 27 | +) |
| 28 | +from diffusers import FluxPipeline # noqa: E402 |
| 29 | +from diffusers.utils import is_torch_version # noqa: E402 |
| 30 | + |
| 31 | + |
| 32 | +# fmt: off |
| 33 | +FORWARD_CASES = [ |
| 34 | + ("flash_hub", None), |
| 35 | + ( |
| 36 | + "_flash_3_hub", |
| 37 | + torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0977, 0.0996, 0.1016, 0.1016, 0.2188, 0.2246, 0.2344, 0.2480, 0.2539, 0.2480, 0.2441, 0.2715], dtype=torch.bfloat16), |
| 38 | + ), |
| 39 | + ( |
| 40 | + "native", |
| 41 | + torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16) |
| 42 | + ), |
| 43 | + ( |
| 44 | + "_native_cudnn", |
| 45 | + torch.tensor([0.0781, 0.0840, 0.0879, 0.0957, 0.0898, 0.0957, 0.0957, 0.0977, 0.2168, 0.2246, 0.2324, 0.2500, 0.2539, 0.2480, 0.2441, 0.2695], dtype=torch.bfloat16), |
| 46 | + ), |
| 47 | +] |
| 48 | + |
| 49 | +COMPILE_CASES = [ |
| 50 | + ("flash_hub", None, True), |
| 51 | + ( |
| 52 | + "_flash_3_hub", |
| 53 | + torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0625, 0.0605, 0.2344, 0.2461, 0.2578, 0.2734, 0.2852, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16), |
| 54 | + True, |
| 55 | + ), |
| 56 | + ( |
| 57 | + "native", |
| 58 | + torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0605, 0.0605, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2773, 0.3066], dtype=torch.bfloat16), |
| 59 | + True, |
| 60 | + ), |
| 61 | + ( |
| 62 | + "_native_cudnn", |
| 63 | + torch.tensor([0.0410, 0.0410, 0.0430, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2793, 0.3086], dtype=torch.bfloat16), |
| 64 | + True, |
| 65 | + ), |
| 66 | +] |
| 67 | +# fmt: on |
| 68 | + |
| 69 | +INFER_KW = { |
| 70 | + "prompt": "dance doggo dance", |
| 71 | + "height": 256, |
| 72 | + "width": 256, |
| 73 | + "num_inference_steps": 2, |
| 74 | + "guidance_scale": 3.5, |
| 75 | + "max_sequence_length": 128, |
| 76 | + "output_type": "pt", |
| 77 | +} |
| 78 | + |
| 79 | + |
| 80 | +def _backend_is_probably_supported(pipe, name: str): |
| 81 | + try: |
| 82 | + pipe.transformer.set_attention_backend(name) |
| 83 | + return pipe, True |
| 84 | + except Exception: |
| 85 | + return False |
| 86 | + |
| 87 | + |
| 88 | +def _check_if_slices_match(output, expected_slice): |
| 89 | + img = output.images.detach().cpu() |
| 90 | + generated_slice = img.flatten() |
| 91 | + generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]]) |
| 92 | + assert torch.allclose(generated_slice, expected_slice, atol=1e-4) |
| 93 | + |
| 94 | + |
| 95 | +@pytest.fixture(scope="session") |
| 96 | +def device(): |
| 97 | + if not torch.cuda.is_available(): |
| 98 | + pytest.skip("CUDA is required for these tests.") |
| 99 | + return torch.device("cuda:0") |
| 100 | + |
| 101 | + |
| 102 | +@pytest.fixture(scope="session") |
| 103 | +def pipe(device): |
| 104 | + repo_id = "black-forest-labs/FLUX.1-dev" |
| 105 | + pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to(device) |
| 106 | + pipe.set_progress_bar_config(disable=True) |
| 107 | + return pipe |
| 108 | + |
| 109 | + |
| 110 | +@pytest.mark.parametrize("backend_name,expected_slice", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES]) |
| 111 | +def test_forward(pipe, backend_name, expected_slice): |
| 112 | + out = _backend_is_probably_supported(pipe, backend_name) |
| 113 | + if isinstance(out, bool): |
| 114 | + pytest.xfail(f"Backend '{backend_name}' not supported in this environment.") |
| 115 | + |
| 116 | + modified_pipe = out[0] |
| 117 | + out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0)) |
| 118 | + _check_if_slices_match(out, expected_slice) |
| 119 | + |
| 120 | + |
| 121 | +@pytest.mark.parametrize( |
| 122 | + "backend_name,expected_slice,error_on_recompile", |
| 123 | + COMPILE_CASES, |
| 124 | + ids=[c[0] for c in COMPILE_CASES], |
| 125 | +) |
| 126 | +def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile): |
| 127 | + if "native" in backend_name and error_on_recompile and not is_torch_version(">=", "2.9.0"): |
| 128 | + pytest.xfail(f"Test with {backend_name=} is compatible with a higher version of torch.") |
| 129 | + |
| 130 | + out = _backend_is_probably_supported(pipe, backend_name) |
| 131 | + if isinstance(out, bool): |
| 132 | + pytest.xfail(f"Backend '{backend_name}' not supported in this environment.") |
| 133 | + |
| 134 | + modified_pipe = out[0] |
| 135 | + modified_pipe.transformer.compile(fullgraph=True) |
| 136 | + |
| 137 | + torch.compiler.reset() |
| 138 | + with ( |
| 139 | + torch._inductor.utils.fresh_inductor_cache(), |
| 140 | + torch._dynamo.config.patch(error_on_recompile=error_on_recompile), |
| 141 | + ): |
| 142 | + out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0)) |
| 143 | + |
| 144 | + _check_if_slices_match(out, expected_slice) |
0 commit comments