|
1 | | -//! zkVM AIR (Algebraic Intermediate Representation) |
2 | | -//! |
3 | | -//! This module defines the transition constraints for the custom zkVM's Instruction Set |
4 | | -//! Architecture (ISA). It translates the VM's operational semantics into a set of polynomial |
5 | | -//! equations that must hold true between consecutive states (rows) of the execution trace. |
6 | | -
|
7 | | -use std::borrow::Borrow; |
8 | | - |
9 | | -use constant::{ |
10 | | - COL_INDEX_ADD, COL_INDEX_ADDR_A, COL_INDEX_ADDR_B, COL_INDEX_ADDR_C, COL_INDEX_AUX, |
11 | | - COL_INDEX_DEREF, COL_INDEX_FLAG_A, COL_INDEX_FLAG_B, COL_INDEX_FLAG_C, COL_INDEX_FP, |
12 | | - COL_INDEX_JUZ, COL_INDEX_MEM_VALUE_A, COL_INDEX_MEM_VALUE_B, COL_INDEX_MEM_VALUE_C, |
13 | | - COL_INDEX_MUL, COL_INDEX_OPERAND_A, COL_INDEX_OPERAND_B, COL_INDEX_OPERAND_C, COL_INDEX_PC, |
14 | | - N_EXEC_AIR_COLUMNS, |
15 | | -}; |
16 | | -use p3_air::{Air, AirBuilder, BaseAir}; |
17 | | -use p3_field::PrimeCharacteristicRing; |
18 | | -use p3_matrix::Matrix; |
19 | | - |
20 | 1 | pub mod constant; |
21 | | - |
22 | | -/// Virtual Machine AIR |
23 | | -#[derive(Debug)] |
24 | | -pub struct VMAir; |
25 | | - |
26 | | -impl<F> BaseAir<F> for VMAir { |
27 | | - /// The total number of columns in the execution trace. |
28 | | - fn width(&self) -> usize { |
29 | | - N_EXEC_AIR_COLUMNS |
30 | | - } |
31 | | -} |
32 | | - |
33 | | -impl<AB: AirBuilder> Air<AB> for VMAir { |
34 | | - #[inline] |
35 | | - fn eval(&self, builder: &mut AB) { |
36 | | - // Get a view of the main execution trace. |
37 | | - let main = builder.main(); |
38 | | - |
39 | | - // Get the current row (`local`) and the next row (`next`) from the trace. |
40 | | - let local = main.row_slice(0).unwrap(); |
41 | | - let local = local.borrow(); |
42 | | - |
43 | | - let next = main.row_slice(1).unwrap(); |
44 | | - let next = next.borrow(); |
45 | | - |
46 | | - // INSTRUCTION DECODING |
47 | | - // |
48 | | - // Extract instruction fields (operands, flags, and opcodes) from the local row. |
49 | | - // |
50 | | - // These are treated as constants for a given row, looked up from the bytecode. |
51 | | - let operand_a = local[COL_INDEX_OPERAND_A].clone().into(); |
52 | | - let operand_b = local[COL_INDEX_OPERAND_B].clone().into(); |
53 | | - let operand_c = local[COL_INDEX_OPERAND_C].clone().into(); |
54 | | - let flag_a = local[COL_INDEX_FLAG_A].clone().into(); |
55 | | - let flag_b = local[COL_INDEX_FLAG_B].clone().into(); |
56 | | - let flag_c = local[COL_INDEX_FLAG_C].clone().into(); |
57 | | - let add = local[COL_INDEX_ADD].clone().into(); |
58 | | - let mul = local[COL_INDEX_MUL].clone().into(); |
59 | | - let deref = local[COL_INDEX_DEREF].clone().into(); |
60 | | - let juz = local[COL_INDEX_JUZ].clone().into(); |
61 | | - let aux = local[COL_INDEX_AUX].clone().into(); |
62 | | - |
63 | | - // REGISTER & MEMORY VALUES |
64 | | - // |
65 | | - // Extract register values and memory access data from the trace. |
66 | | - let (pc, next_pc) = ( |
67 | | - local[COL_INDEX_PC].clone().into(), |
68 | | - next[COL_INDEX_PC].clone().into(), |
69 | | - ); |
70 | | - let (fp, next_fp) = ( |
71 | | - local[COL_INDEX_FP].clone().into(), |
72 | | - next[COL_INDEX_FP].clone().into(), |
73 | | - ); |
74 | | - let (addr_a, addr_b, addr_c) = ( |
75 | | - local[COL_INDEX_ADDR_A].clone().into(), |
76 | | - local[COL_INDEX_ADDR_B].clone().into(), |
77 | | - local[COL_INDEX_ADDR_C].clone().into(), |
78 | | - ); |
79 | | - let (value_a, value_b, value_c) = ( |
80 | | - local[COL_INDEX_MEM_VALUE_A].clone().into(), |
81 | | - local[COL_INDEX_MEM_VALUE_B].clone().into(), |
82 | | - local[COL_INDEX_MEM_VALUE_C].clone().into(), |
83 | | - ); |
84 | | - |
85 | | - // OPERAND RECONSTRUCTION |
86 | | - // |
87 | | - // Compute the effective values of the operands (`nu_a`, `nu_b`, `nu_c`). |
88 | | - // |
89 | | - // Each operand can be either: |
90 | | - // - an immediate value (from `operand_x`), |
91 | | - // - a value loaded from memory (from `value_x`), selected by `flag_x`. |
92 | | - // |
93 | | - // Formula: nu_x = flag_x * operand_x + (1 - flag_x) * value_x |
94 | | - let nu_a = |
95 | | - flag_a.clone() * operand_a.clone() + (AB::Expr::ONE - flag_a.clone()) * value_a.clone(); |
96 | | - let nu_b = flag_b.clone() * operand_b.clone() + (AB::Expr::ONE - flag_b.clone()) * value_b; |
97 | | - // Operand `c` is special: its immediate value can be the frame pointer `fp` itself. |
98 | | - let nu_c = flag_c.clone() * fp.clone() + (AB::Expr::ONE - flag_c.clone()) * value_c.clone(); |
99 | | - |
100 | | - // MEMORY ADDRESS CONSTRAINTS |
101 | | - // |
102 | | - // Enforce that if an operand is loaded from memory (`flag_x` = 0), its address |
103 | | - // (`addr_x`) must correctly correspond to the frame pointer plus its offset (`fp + operand_x`). |
104 | | - // |
105 | | - // If `flag_x` = 1, the constraint is `0 * ... = 0`, so it is satisfied. |
106 | | - builder.assert_zero((AB::Expr::ONE - flag_a) * (addr_a - (fp.clone() + operand_a))); |
107 | | - builder.assert_zero((AB::Expr::ONE - flag_b) * (addr_b - (fp.clone() + operand_b))); |
108 | | - builder.assert_zero( |
109 | | - (AB::Expr::ONE - flag_c) * (addr_c.clone() - (fp.clone() + operand_c.clone())), |
110 | | - ); |
111 | | - |
112 | | - // INSTRUCTION CONSTRAINTS |
113 | | - |
114 | | - // ADD Instruction Constraint |
115 | | - // |
116 | | - // If the `add` opcode is active, enforce `nu_a + nu_c = nu_b`. |
117 | | - builder.assert_zero(add * (nu_b.clone() - (nu_a.clone() + nu_c.clone()))); |
118 | | - |
119 | | - // MUL Instruction Constraint |
120 | | - // |
121 | | - // If the `mul` opcode is active, enforce `nu_a * nu_c = nu_b`. |
122 | | - builder.assert_zero(mul * (nu_b.clone() - nu_a.clone() * nu_c.clone())); |
123 | | - |
124 | | - // DEREF Instruction Constraints |
125 | | - // |
126 | | - // This instruction computes `m[m[fp + α] + β] = res`. |
127 | | - // |
128 | | - // 1. Enforce that the final address `addr_c` is computed correctly: `addr_c = value_a + operand_c`. |
129 | | - // |
130 | | - // Here, `value_a` is the pointer `m[fp + α]` and `operand_c` is the offset `β`. |
131 | | - builder.assert_zero(deref.clone() * (addr_c - (value_a + operand_c))); |
132 | | - // 2. If `aux` = 1, the result `res` is a normal value (`nu_b`). Enforce `value_c = nu_b`. |
133 | | - builder.assert_zero(deref.clone() * aux.clone() * (value_c.clone() - nu_b.clone())); |
134 | | - // 3. If `aux` = 0, the result `res` is the frame pointer itself. Enforce `value_c = fp`. |
135 | | - builder.assert_zero(deref * (AB::Expr::ONE - aux) * (value_c - fp.clone())); |
136 | | - |
137 | | - // JUZ (Jump Unless Zero) and Program Flow Constraints |
138 | | - |
139 | | - // Default Program Flow (No Jump) |
140 | | - // |
141 | | - // If `juz` is not active, the program counter must increment by 1. |
142 | | - builder.assert_zero( |
143 | | - (AB::Expr::ONE - juz.clone()) * (next_pc.clone() - (pc.clone() + AB::Expr::ONE)), |
144 | | - ); |
145 | | - // If `juz` is not active, the frame pointer must remain unchanged. |
146 | | - builder.assert_zero((AB::Expr::ONE - juz.clone()) * (next_fp.clone() - fp.clone())); |
147 | | - |
148 | | - // JUZ Active Program Flow |
149 | | - // |
150 | | - // The condition for the jump is `nu_a`. |
151 | | - // 1. Enforce that the condition `nu_a` is boolean (0 or 1). |
152 | | - builder.assert_zero(juz.clone() * nu_a.clone() * (AB::Expr::ONE - nu_a.clone())); |
153 | | - // 2. If jump is taken (`nu_a` = 1), the next `pc` must be the destination `nu_b`. |
154 | | - builder.assert_zero(juz.clone() * nu_a.clone() * (next_pc.clone() - nu_b)); |
155 | | - // 3. If jump is taken (`nu_a` = 1), the next `fp` must be the new frame pointer `nu_c`. |
156 | | - builder.assert_zero(juz.clone() * nu_a.clone() * (next_fp.clone() - nu_c)); |
157 | | - // 4. If jump is NOT taken (`nu_a` = 0), the next `pc` must be `pc + 1`. |
158 | | - builder.assert_zero( |
159 | | - juz.clone() * (AB::Expr::ONE - nu_a.clone()) * (next_pc - (pc + AB::Expr::ONE)), |
160 | | - ); |
161 | | - // 5. If jump is NOT taken (`nu_a` = 0), the next `fp` must be the same as the current `fp`. |
162 | | - builder.assert_zero(juz * (AB::Expr::ONE - nu_a) * (next_fp - fp)); |
163 | | - } |
164 | | -} |
| 2 | +pub mod vm; |
0 commit comments