File tree Expand file tree Collapse file tree 1 file changed +2
-23
lines changed
Mathlib/Combinatorics/Additive Expand file tree Collapse file tree 1 file changed +2
-23
lines changed Original file line number Diff line number Diff line change @@ -141,31 +141,10 @@ lemma mul_inv_eq_inv_mul_of_doubling_lt_two (h : #(A * A) < 2 * #A) : A * A⁻¹
141141 simpa using
142142 mul_inv_eq_inv_mul_of_doubling_lt_two_aux (A := A⁻¹) (by simpa [← mul_inv_rev] using h)
143143
144- -- theorem Nat.cast_rat_nonneg (n : Nat) : 0 ≤ (n : Rat) := Nat.cast_nonneg n
145-
146- -- grind_pattern Nat.cast_rat_nonneg => (n : Rat)
147-
148- -- grind_pattern Nat.cast_nonneg' => (n : α)
149-
150- section
151- open Std Lean.Grind
152- attribute [local instance ] Semiring.natCast
153-
154- theorem Nat.cast_nonneg''
155- {α : Type _} [Lean.Grind.Semiring α] [LE α] [LT α] [IsPreorder α] [OrderedRing α]
156- (n : Nat) : 0 ≤ (n : α) :=
157- sorry
158-
159- grind_pattern Nat.cast_nonneg'' => (n : α)
160-
161- end
162-
163- example (p q : Nat) (h : (p : Rat) < 3 / 2 * q) : (p : Rat) < 2 * q := by grind
164-
165144private lemma weaken_doubling (h : #(A * A) < (3 / 2 : ℚ) * #A) : #(A * A) < 2 * #A := by
166145 rw [← Nat.cast_lt (α := ℚ), Nat.cast_mul, Nat.cast_two]
167- grind
168- #exit
146+ linarith
147+
169148private lemma nonempty_of_doubling (h : #(A * A) < (3 / 2 : ℚ) * #A) : A.Nonempty := by
170149 by_contra! rfl
171150 simp at h
You can’t perform that action at this time.
0 commit comments