Skip to content

Commit 4afbe26

Browse files
committed
feat(Algebra/Lie/BaseChange): map of base-changed Lie algebras (#34865)
Given a homomorphism of commutative `R`-algebras and an `R`-Lie algebra map, we define an `R`-Lie algebra map of the base-changed Lie algebras.
1 parent fe7639f commit 4afbe26

File tree

1 file changed

+20
-0
lines changed

1 file changed

+20
-0
lines changed

Mathlib/Algebra/Lie/BaseChange.lean

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -124,6 +124,26 @@ instance instLieModule : LieModule A (A ⊗[R] L) (A ⊗[R] M) where
124124
smul_lie t x m := by simp only [bracket_def, map_smul, LinearMap.smul_apply]
125125
lie_smul _ _ _ := map_smul _ _ _
126126

127+
/-- The Lie algebra homomorphism induced by an algebra map. -/
128+
def map {R A B L L' : Type*} [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B]
129+
[LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : A →ₐ[R] B) (g : L →ₗ⁅R⁆ L') :
130+
A ⊗[R] L →ₗ⁅R⁆ B ⊗[R] L' :=
131+
{ TensorProduct.map f.toLinearMap g with
132+
map_lie' {x y} := by
133+
simp only [bracket_def, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom]
134+
refine x.induction_on (by simp) ?_ ?_
135+
· intro _ _
136+
refine y.induction_on (by simp) (fun _ _ ↦ by simp) (fun _ _ h1 h2 ↦ by simp [h1, h2])
137+
· intro _ _
138+
refine y.induction_on (by simp) (fun _ _ h ↦ by simp [h]) (by simp_all) }
139+
140+
@[simp]
141+
lemma map_apply_tmul {R A B L L' : Type*} [CommRing R] [CommRing A] [Algebra R A] [CommRing B]
142+
[Algebra R B] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : A →ₐ[R] B}
143+
{g : L →ₗ⁅R⁆ L'} (a : A) (x : L) :
144+
map f g (a ⊗ₜ x) = (f a) ⊗ₜ (g x) :=
145+
rfl
146+
127147
end ExtendScalars
128148

129149
namespace RestrictScalars

0 commit comments

Comments
 (0)