Skip to content

Commit 75e2270

Browse files
committed
wip
1 parent 9f7e1a2 commit 75e2270

File tree

1 file changed

+10
-16
lines changed

1 file changed

+10
-16
lines changed

Mathlib/AlgebraicGeometry/Sites/AffineEtale.lean

Lines changed: 10 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ namespace FinitelyPresentedOverAffineOpen
113113
variable (P : S.FinitelyPresentedOverAffineOpen)
114114

115115
/-- The ring defined by the given presentation by generators and relations. -/
116-
abbrev Ring : Type u :=
116+
protected abbrev Ring : Type u :=
117117
MvPolynomial (Fin P.g) Γ(S, P.U) ⧸ Ideal.span (Set.range P.rel)
118118

119119
lemma exists_nhd {X : Scheme.{u}} (f : X ⟶ S) [LocallyOfFinitePresentation f] (x : X) :
@@ -164,22 +164,16 @@ lemma exists_subring
164164
the restriction to the opens `U (α i)`, and show that it is injective by
165165
using the sheaf property of the structure sheaf. -/
166166
have (i : Fin n) := (U (α i)).ι
167-
let β (i : Fin n) : A →+* ((P ∘ α) i).Ring := (Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
168-
let φ : A →+* ∀ i, ((P ∘ α) i).Ring :=
169-
{ toFun a i := β i a
170-
map_zero' := by ext; simp
171-
map_add' _ _ := by ext; simp
172-
map_one' := by ext; simp
173-
map_mul' _ _ := by ext; simp }
167+
let β (i : Fin n) : A →+* ((P ∘ α) i).Ring :=
168+
(Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
169+
let φ : A →+* ∀ i, ((P ∘ α) i).Ring := Pi.ringHom β
174170
have hφ : Function.Injective φ := by
175-
suffices ∀ a, φ a = 0 → a = 0 from
176-
fun a b h ↦ by
177-
rw [← sub_eq_zero] at h ⊢
178-
exact this _ (by simpa)
179-
intro a ha
171+
refine (AddMonoidHom.ker_eq_bot_iff φ.toAddMonoidHom).1 ?_
172+
ext a
173+
refine ⟨fun ha ↦ ?_, by rintro rfl; simp⟩
180174
replace ha (i : Fin n) : β i a = 0 := congr_fun ha i
181175
obtain ⟨a, rfl⟩ := (ΓSpecIso A).commRingCatIsoToRingEquiv.surjective a
182-
simp only [EmbeddingLike.map_eq_zero_iff]
176+
simp only [AddSubgroup.mem_bot, EmbeddingLike.map_eq_zero_iff]
183177
refine (openCoverOfIsOpenCover _ (U ∘ α) (.mk (by aesop))).ext_elem _ _ (fun i ↦ ?_)
184178
replace ha : (ΓSpecIso _).hom (((iso (α i)).inv ≫ (U (α i)).ι).appTop a) = 0 := by
185179
simpa [← ha] using ConcreteCategory.congr_hom (ΓSpecIso_naturality
@@ -198,8 +192,8 @@ end FinitelyPresentedOverAffineOpen
198192
lemma essentiallySmall_costructuredArrow_Spec
199193
(P : MorphismProperty Scheme.{u}) (hP : P ≤ @LocallyOfFinitePresentation) [P.RespectsIso] :
200194
EssentiallySmall.{u} (P.CostructuredArrow ⊤ Scheme.Spec S) := by
201-
/- It suffices to show that there is a `u`-small type which parametrizes
202-
up to isomorphism all the the possible rings `Z.left.unop` for
195+
/- It suffices to show that there is a `u`-small type which, up to
196+
isomorphisms, parametrizes all the the possible rings `Z.left.unop` for
203197
`Z : P.CostructuredArrow ⊤ Scheme.Spec S`. -/
204198
suffices ∃ (ι : Type u) (R : ι → CommRingCat.{u}),
205199
∀ (Z : P.CostructuredArrow ⊤ Scheme.Spec S),

0 commit comments

Comments
 (0)