@@ -113,7 +113,7 @@ namespace FinitelyPresentedOverAffineOpen
113113variable (P : S.FinitelyPresentedOverAffineOpen)
114114
115115/-- The ring defined by the given presentation by generators and relations. -/
116- abbrev Ring : Type u :=
116+ protected abbrev Ring : Type u :=
117117 MvPolynomial (Fin P.g) Γ(S, P.U) ⧸ Ideal.span (Set.range P.rel)
118118
119119lemma exists_nhd {X : Scheme.{u}} (f : X ⟶ S) [LocallyOfFinitePresentation f] (x : X) :
@@ -164,22 +164,16 @@ lemma exists_subring
164164 the restriction to the opens `U (α i)`, and show that it is injective by
165165 using the sheaf property of the structure sheaf. -/
166166 have (i : Fin n) := (U (α i)).ι
167- let β (i : Fin n) : A →+* ((P ∘ α) i).Ring := (Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
168- let φ : A →+* ∀ i, ((P ∘ α) i).Ring :=
169- { toFun a i := β i a
170- map_zero' := by ext; simp
171- map_add' _ _ := by ext; simp
172- map_one' := by ext; simp
173- map_mul' _ _ := by ext; simp }
167+ let β (i : Fin n) : A →+* ((P ∘ α) i).Ring :=
168+ (Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
169+ let φ : A →+* ∀ i, ((P ∘ α) i).Ring := Pi.ringHom β
174170 have hφ : Function.Injective φ := by
175- suffices ∀ a, φ a = 0 → a = 0 from
176- fun a b h ↦ by
177- rw [← sub_eq_zero] at h ⊢
178- exact this _ (by simpa)
179- intro a ha
171+ refine (AddMonoidHom.ker_eq_bot_iff φ.toAddMonoidHom).1 ?_
172+ ext a
173+ refine ⟨fun ha ↦ ?_, by rintro rfl; simp⟩
180174 replace ha (i : Fin n) : β i a = 0 := congr_fun ha i
181175 obtain ⟨a, rfl⟩ := (ΓSpecIso A).commRingCatIsoToRingEquiv.surjective a
182- simp only [EmbeddingLike.map_eq_zero_iff]
176+ simp only [AddSubgroup.mem_bot, EmbeddingLike.map_eq_zero_iff]
183177 refine (openCoverOfIsOpenCover _ (U ∘ α) (.mk (by aesop))).ext_elem _ _ (fun i ↦ ?_)
184178 replace ha : (ΓSpecIso _).hom (((iso (α i)).inv ≫ (U (α i)).ι).appTop a) = 0 := by
185179 simpa [← ha] using ConcreteCategory.congr_hom (ΓSpecIso_naturality
@@ -198,8 +192,8 @@ end FinitelyPresentedOverAffineOpen
198192lemma essentiallySmall_costructuredArrow_Spec
199193 (P : MorphismProperty Scheme.{u}) (hP : P ≤ @LocallyOfFinitePresentation) [P.RespectsIso] :
200194 EssentiallySmall.{u} (P.CostructuredArrow ⊤ Scheme.Spec S) := by
201- /- It suffices to show that there is a `u`-small type which parametrizes
202- up to isomorphism all the the possible rings `Z.left.unop` for
195+ /- It suffices to show that there is a `u`-small type which, up to
196+ isomorphisms, parametrizes all the the possible rings `Z.left.unop` for
203197 `Z : P.CostructuredArrow ⊤ Scheme.Spec S`. -/
204198 suffices ∃ (ι : Type u) (R : ι → CommRingCat.{u}),
205199 ∀ (Z : P.CostructuredArrow ⊤ Scheme.Spec S),
0 commit comments