Skip to content

Commit 8bf078b

Browse files
feat(LinearAlgebra/Alternating): add map_eq_zero_of_card_lt
Adds a theorem stating that an alternating map is zero on any input when the index type has strictly more elements than the target of the input function (pigeonhole principle).
1 parent 2b4c615 commit 8bf078b

File tree

1 file changed

+5
-0
lines changed

1 file changed

+5
-0
lines changed

Mathlib/LinearAlgebra/Alternating/Basic.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ public import Mathlib.LinearAlgebra.LinearIndependent.Defs
1010
public import Mathlib.LinearAlgebra.Multilinear.Basis
1111

1212
import Mathlib.Algebra.Module.Torsion.Pi
13+
import Mathlib.Data.Fintype.Pigeonhole
1314

1415
/-!
1516
# Alternating Maps
@@ -195,6 +196,10 @@ theorem map_eq_zero_of_not_injective (v : ι → M) (hv : ¬Function.Injective v
195196
rcases hv with ⟨i₁, i₂, heq, hne⟩
196197
exact f.map_eq_zero_of_eq v heq hne
197198

199+
theorem map_eq_zero_of_card_lt [Fintype ι] [Fintype M] (v : ι → M)
200+
(h : Fintype.card M < Fintype.card ι) : f v = 0 := by
201+
obtain ⟨i, j, hne, heq⟩ := Fintype.exists_ne_map_eq_of_card_lt v h
202+
exact f.map_eq_zero_of_eq v heq hne
198203
/-!
199204
### Algebraic structure inherited from `MultilinearMap`
200205

0 commit comments

Comments
 (0)