Skip to content

Commit 975ebd9

Browse files
committed
cleaning up
1 parent ad48fc6 commit 975ebd9

File tree

2 files changed

+10
-12
lines changed

2 files changed

+10
-12
lines changed

Mathlib/Algebra/Ring/Subring/Basic.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -73,6 +73,14 @@ variable [Ring S] [Ring T]
7373
namespace Subring
7474
variable {s t : Subring R}
7575

76+
/-- The equivalence of rings between two equals subrings. -/
77+
@[simps!]
78+
def equivOfEq (h : s = t) :
79+
s ≃+* t where
80+
toEquiv := (Equiv.refl _).subtypeEquiv (by simp [h])
81+
map_mul' := by simp
82+
map_add' := by simp
83+
7684
@[gcongr, mono]
7785
theorem toSubsemiring_strictMono : StrictMono (toSubsemiring : Subring R → Subsemiring R) :=
7886
fun _ _ => id

Mathlib/AlgebraicGeometry/Sites/AffineEtale.lean

Lines changed: 2 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,6 @@ universe u v u'
3131

3232
open CategoryTheory Opposite Limits MorphismProperty
3333

34-
-- to be moved
35-
/-- The equivalence of rings between two equals subrings. -/
36-
@[simps!]
37-
def Subring.equivOfEq {R : Type u} [Ring R] {s t : Subring R} (h : s = t) :
38-
s ≃+* t where
39-
toEquiv := (Equiv.refl _).subtypeEquiv (by simp [h])
40-
map_mul' := by simp
41-
map_add' := by simp
42-
4334
namespace AlgebraicGeometry.Scheme
4435

4536
variable {S : Scheme.{u}}
@@ -159,7 +150,6 @@ lemma exists_subring
159150
/- We consider the map `φ : A →+* ∀ i, ((P ∘ α) i).Ring` that is essentially given by
160151
the restriction to the opens `U (α i)`, and show that it is injective by
161152
using the sheaf property of the structure sheaf. -/
162-
have (i : Fin n) := (U (α i)).ι
163153
let β (i : Fin n) : A →+* ((P ∘ α) i).Ring :=
164154
(Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
165155
let φ : A →+* ∀ i, ((P ∘ α) i).Ring := Pi.ringHom β
@@ -197,8 +187,8 @@ lemma essentiallySmall_costructuredArrow_Spec
197187
rw [essentiallySmall_iff_objectPropertyEssentiallySmall_top]
198188
obtain ⟨ι, R, hR⟩ := this
199189
let P₀ : ObjectProperty (P.CostructuredArrow ⊤ Scheme.Spec S) :=
200-
.ofObj (fun (t : Σ (i : ι) (f : Scheme.Spec.obj (Opposite.op (R i)) ⟶ S), PLift (P f)) ↦
201-
.mk (A := op (R t.1)) _ t.2.1 t.2.2.down)
190+
.ofObj (fun (t : Σ (i : ι) (f : Scheme.Spec.obj (op (R i)) ⟶ S), PLift (P f)) ↦
191+
.mk _ t.2.1 t.2.2.down)
202192
refine ObjectProperty.EssentiallySmall.of_le (Q := P₀.isoClosure) (fun Z _ ↦ ?_)
203193
obtain ⟨i, ⟨e⟩⟩ := hR Z
204194
refine ⟨_, ⟨i, Spec.map e.inv ≫ Z.hom, ⟨RespectsIso.precomp _ _ _ Z.prop⟩⟩, ⟨?_⟩⟩

0 commit comments

Comments
 (0)