@@ -31,15 +31,6 @@ universe u v u'
3131
3232open CategoryTheory Opposite Limits MorphismProperty
3333
34- -- to be moved
35- /-- The equivalence of rings between two equals subrings. -/
36- @[simps!]
37- def Subring.equivOfEq {R : Type u} [Ring R] {s t : Subring R} (h : s = t) :
38- s ≃+* t where
39- toEquiv := (Equiv.refl _).subtypeEquiv (by simp [h])
40- map_mul' := by simp
41- map_add' := by simp
42-
4334namespace AlgebraicGeometry.Scheme
4435
4536variable {S : Scheme.{u}}
@@ -159,7 +150,6 @@ lemma exists_subring
159150 /- We consider the map `φ : A →+* ∀ i, ((P ∘ α) i).Ring` that is essentially given by
160151 the restriction to the opens `U (α i)`, and show that it is injective by
161152 using the sheaf property of the structure sheaf. -/
162- have (i : Fin n) := (U (α i)).ι
163153 let β (i : Fin n) : A →+* ((P ∘ α) i).Ring :=
164154 (Spec.preimage ((iso (α i)).inv ≫ (U (α i)).ι)).hom
165155 let φ : A →+* ∀ i, ((P ∘ α) i).Ring := Pi.ringHom β
@@ -197,8 +187,8 @@ lemma essentiallySmall_costructuredArrow_Spec
197187 rw [essentiallySmall_iff_objectPropertyEssentiallySmall_top]
198188 obtain ⟨ι, R, hR⟩ := this
199189 let P₀ : ObjectProperty (P.CostructuredArrow ⊤ Scheme.Spec S) :=
200- .ofObj (fun (t : Σ (i : ι) (f : Scheme.Spec.obj (Opposite. op (R i)) ⟶ S), PLift (P f)) ↦
201- .mk (A := op (R t. 1 )) _ t.2 .1 t.2 .2 .down)
190+ .ofObj (fun (t : Σ (i : ι) (f : Scheme.Spec.obj (op (R i)) ⟶ S), PLift (P f)) ↦
191+ .mk _ t.2 .1 t.2 .2 .down)
202192 refine ObjectProperty.EssentiallySmall.of_le (Q := P₀.isoClosure) (fun Z _ ↦ ?_)
203193 obtain ⟨i, ⟨e⟩⟩ := hR Z
204194 refine ⟨_, ⟨i, Spec.map e.inv ≫ Z.hom, ⟨RespectsIso.precomp _ _ _ Z.prop⟩⟩, ⟨?_⟩⟩
0 commit comments