@@ -164,7 +164,7 @@ theorem mul_comp [Mul M] [Mul N] [CommSemigroup P] (g₁ g₂ : N →ₙ* P) (f
164164theorem comp_mul [Mul M] [CommSemigroup N] [CommSemigroup P] (g : N →ₙ* P) (f₁ f₂ : M →ₙ* N) :
165165 g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂ := by
166166 ext
167- simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]
167+ simp
168168
169169end MulHom
170170
@@ -256,7 +256,8 @@ lemma mul_comp [MulOneClass P] (g₁ g₂ : M →* N) (f : P →* M) :
256256@[to_additive]
257257lemma comp_mul [CommMonoid P] (g : N →* P) (f₁ f₂ : M →* N) :
258258 g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂ := by
259- ext; simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]
259+ ext
260+ simp
260261
261262end Mul
262263
@@ -278,7 +279,7 @@ theorem inv_comp (φ : N →* G) (ψ : M →* N) : φ⁻¹.comp ψ = (φ.comp ψ
278279@ [to_additive (attr := simp)]
279280theorem comp_inv (φ : G →* H) (ψ : M →* G) : φ.comp ψ⁻¹ = (φ.comp ψ)⁻¹ := by
280281 ext
281- simp only [Function.comp_apply, inv_apply, map_inv, coe_comp]
282+ simp
282283
283284/-- If `f` and `g` are monoid homomorphisms to a commutative group, then `f / g` is the homomorphism
284285sending `x` to `(f x) / (g x)`. -/
@@ -295,7 +296,8 @@ lemma div_comp (f g : N →* G) (h : M →* N) : (f / g).comp h = f.comp h / g.c
295296
296297@ [to_additive (attr := simp)]
297298lemma comp_div (f : G →* H) (g h : M →* G) : f.comp (g / h) = f.comp g / f.comp h := by
298- ext; simp only [Function.comp_apply, div_apply, map_div, coe_comp]
299+ ext
300+ simp
299301
300302end InvDiv
301303
0 commit comments