We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
(f : α → ℝ) ^ (0 : ℝ) = 1
1 parent 672ea22 commit ff79675Copy full SHA for ff79675
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
@@ -121,6 +121,9 @@ theorem rpow_zero (x : ℝ) : x ^ (0 : ℝ) = 1 := by simp [rpow_def]
121
122
theorem rpow_zero_pos (x : ℝ) : 0 < x ^ (0 : ℝ) := by simp
123
124
+@[simp]
125
+theorem pi_rpow_zero {α : Type*} (f : α → ℝ) : f ^ (0 : ℝ) = 1 := by ext; simp
126
+
127
@[simp]
128
theorem zero_rpow {x : ℝ} (h : x ≠ 0) : (0 : ℝ) ^ x = 0 := by simp [rpow_def, *]
129
0 commit comments