Skip to content

Commit ff79675

Browse files
committed
feat(Analysis/SpecialFunctions/Pow): prove (f : α → ℝ) ^ (0 : ℝ) = 1 (#35083)
Prove `pi_rpow_zero (f : α → ℝ) : f ^ (0 : ℝ) = 1`.
1 parent 672ea22 commit ff79675

File tree

1 file changed

+3
-0
lines changed
  • Mathlib/Analysis/SpecialFunctions/Pow

1 file changed

+3
-0
lines changed

Mathlib/Analysis/SpecialFunctions/Pow/Real.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -121,6 +121,9 @@ theorem rpow_zero (x : ℝ) : x ^ (0 : ℝ) = 1 := by simp [rpow_def]
121121

122122
theorem rpow_zero_pos (x : ℝ) : 0 < x ^ (0 : ℝ) := by simp
123123

124+
@[simp]
125+
theorem pi_rpow_zero {α : Type*} (f : α → ℝ) : f ^ (0 : ℝ) = 1 := by ext; simp
126+
124127
@[simp]
125128
theorem zero_rpow {x : ℝ} (h : x ≠ 0) : (0 : ℝ) ^ x = 0 := by simp [rpow_def, *]
126129

0 commit comments

Comments
 (0)