diff --git a/Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/RootsExtrema.lean b/Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/RootsExtrema.lean index 608b3c2df318c7..8c4edf0c1247f3 100644 --- a/Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/RootsExtrema.lean +++ b/Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev/RootsExtrema.lean @@ -22,6 +22,10 @@ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex * T_n(x) ∈ [-1, 1] iff x ∈ [-1, 1]: `abs_eval_T_real_le_one_iff` * Zeroes of T and U: `roots_T_real`, `roots_U_real` * Local extrema of T: `isLocalExtr_T_real_iff`, `isExtrOn_T_real_iff` + +## TODO + +Prove that the roots of the Chebyshev polynomials (except 0) are irrational. -/ public section diff --git a/Mathlib/RingTheory/Polynomial/Chebyshev.lean b/Mathlib/RingTheory/Polynomial/Chebyshev.lean index a5976b559aa429..5a164fe2757426 100644 --- a/Mathlib/RingTheory/Polynomial/Chebyshev.lean +++ b/Mathlib/RingTheory/Polynomial/Chebyshev.lean @@ -54,8 +54,6 @@ and do not have `map (Int.castRingHom R)` interfering all the time. * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials -* Compute zeroes and extrema of Chebyshev polynomials. -* Prove that the roots of the Chebyshev polynomials (except 0) are irrational. -/ @[expose] public section