You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+40-23Lines changed: 40 additions & 23 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -12,7 +12,9 @@ Furthermore, it contains algorithms to process datasets (e.g., p-core pruning, l
12
12
13
13
The software already contains four novel tag-recommender approaches based on cognitive science theory. The first one ([3Layers](http://www.christophtrattner.info/pubs/cikm2013.pdf)) (Seitlinger et al, 2013) uses topic information and is based on the ALCOVE/MINERVA2 theories (Krutschke, 1992; Hintzman, 1984). The second one ([BLL+C](http://delivery.acm.org/10.1145/2580000/2576934/p463-kowald.pdf)) (Kowald et al., 2014b) uses time information is based on the ACT-R theory (Anderson et al., 2004). The third one ([3LT](http://www.christophtrattner.info/pubs/msm8_kowald.pdf)) (Kowald et al., 2015b) is a combination of the former two approaches and integrates the time component on the level of tags and topics. Finally, the fourth one ([BLLac+MPr](http://www.christophtrattner.info/pubs/msm7_kowald.pdf)) extends the BLL+C algorithm with semantic correlations (Kowald et al., 2015a).
14
14
15
-
Additionally, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
15
+
Apart from this, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
16
+
17
+
Finally, TagRec was also utilized for the recommendation of hashtags in Twitter (Kowald et al., 2017). Thus, it contains an initial set of algorithms for this task as well. For this, TagRec also contains a connection to the Apache Solr search engine framework.
16
18
17
19
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
18
20
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
@@ -29,9 +31,11 @@ The source-code can be directly checked-out through this repository. It contains
29
31
* ml_core for MovieLens
30
32
* lastfm_core for LastFM
31
33
* wiki_core for Wikipedia (based on bookmarks from Delicious)
34
+
* twitter_core/researchers for the Twitter CompSci dataset
35
+
* twitter_core/general for the Twitter Random dataset
32
36
33
37
## How-to-use
34
-
The _tagrecommender_ .jar uses three parameters:
38
+
The _tagrec_ .jar uses three parameters:
35
39
36
40
First the algorithm,
37
41
@@ -41,12 +45,12 @@ Tag-Recommender:
41
45
* bll_c for BLL and BLL+C (based on ACT-R theory) (Kowald et al., 2014b)
42
46
* bll_c_ac for BLL and BLL+MPr together with semantic correlations (Trattner et al., 2014)
43
47
* lda for Latent Dirichlet Allocation (Krestel et al., 2009)
44
-
* cf for (user-based) Collaborative Filtering (Jäschke et al., 2007)
45
-
* cfr for (resource-based and mixed) Collaborative Filtering (Jäschke et al., 2007)
48
+
* cf for (user-based) Collaborative Filtering (Jäschke et al., 2007)
49
+
* cfr for (resource-based and mixed) Collaborative Filtering (Jäschke et al., 2007)
46
50
* fr for Adapted PageRank and FolkRank (Hotho et al., 2006)
47
51
* girptm for GIRP and GIRPTM (Zhang et al., 2012)
48
-
* mp for MostPopular tags (Jäschke et al., 2007)
49
-
* mp_u_r for MostPopular tags by user and/or resource (Jäschke et al., 2007)
52
+
* mp for MostPopular tags (Jäschke et al., 2007)
53
+
* mp_u_r for MostPopular tags by user and/or resource (Jäschke et al., 2007)
50
54
51
55
Resource-Recommender:
52
56
* item_sustain for the improved CF approach based on the SUSTAIN model
@@ -58,7 +62,17 @@ Resource-Recommender:
58
62
* item_zheng for the tag- and time-based approach by Zheng et al. (2011)
59
63
* item_huang for the tag- and time-based appraoch by Huang et al. (2014)
60
64
65
+
Hashtag-Recommender (Kowald et al., 2017):
66
+
* hashtag_analysis for analyzing the temporal effects on hashtag reuse
67
+
* hashtag_socialmp for MostPopular hashtags of the followees (i.e., MPs)
68
+
* hashtag socialrecency for recency-ranked hashtags of the followees (i.e., MRs)
69
+
* hashtag_socialbll for BLL-ranked hashtags of the followees (i.e., BLLs)
70
+
* hashtag_hybrid for BLLi,s
71
+
* hashtag_cb_res for BLLi,s,c on the Twitter CompSci dataset and SOLR core
72
+
* hashtag_cb_gen for BLLi,s,c on the Twitter Random dataset and SOLR core
73
+
61
74
Data-Processing:
75
+
* stats for printing the dataset statistics
62
76
* core for calculating p-cores on a dataset
63
77
* split_l1o for splitting a dataset into training and test-sets using a leave-one-out method
64
78
* split_8020 for splitting a dataset into training and test-sets using 80/20 split
@@ -80,6 +94,8 @@ Data-Processing:
80
94
* ml for MovieLens
81
95
* lastfm for LastFM
82
96
* wiki for Wikipedia (based on bookmarks from Delicious)
97
+
* twitter_res for the Twitter CompSci dataset
98
+
* twitter_gen for the Twitter Random dataset
83
99
84
100
and third the filename (without file extension)
85
101
@@ -154,10 +170,10 @@ _Bibtex:_
154
170
address = {New York, NY, USA},
155
171
}`
156
172
157
-
158
-
159
173
## Publications
160
-
* C. Trattner, D. Kowald, P. Seitlinger, S. Kopeinik, S. and T. Ley: [Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems](http://www.christophtrattner.info/pubs/bll_journal_final.pdf), Journal of Web Science, 2016.
174
+
* D. Kowald, S. Pujari and E. Lex: Temporal Effects on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach (preprint will be available soon), In Proc. of WWW, 2017
175
+
* D. Kowald and E. Lex: [The Influence of Frequency, Recency and Semantic Context on the Reuse of Tags in Social Tagging Systems](https://arxiv.org/pdf/1604.00837v1.pdf), In Proc. of Hypertext, 2016
176
+
* C. Trattner, D. Kowald, P. Seitlinger, S. Kopeinik and T. Ley: [Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems](http://www.christophtrattner.info/pubs/bll_journal_final.pdf), Journal of Web Science, 2016.
161
177
* D. Kowald and E. Lex: [Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study](http://dl.acm.org/citation.cfm?id=2799664), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
162
178
* S. Larrain, C. Trattner, D. Parra, E. Graells-Garrido and K. Norvag: [Good Times Bad Times: A Study on Recency Effects in Collaborative Filtering for Social Tagging](http://www.christophtrattner.info/pubs/recsys2015b.pdf), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
163
179
* P. Seitlinger, D. Kowald, S. Kopeinik, I. Hasani-Mavriqi, T. Ley, and Elisabeth Lex: [Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics](http://arxiv.org/pdf/1501.07716v1.pdf). In Proc. of WWW'2015 Companion. ACM. 2015
@@ -168,22 +184,23 @@ _Bibtex:_
168
184
* P. Seitlinger, D. Kowald, C. Trattner, and T. Ley.: [Recommending Tags with a Model of Human Categorization](http://www.christophtrattner.info/pubs/cikm2013.pdf). In Proceedings of The ACM International Conference on Information and Knowledge Management (CIKM 2013), ACM, New York, NY, USA, 2013.
169
185
170
186
## References
171
-
* A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies: Search and ranking. In The semantic web: research and applications, pages 411–426. Springer, 2006.
172
-
* L. Zhang, J. Tang, and M. Zhang. Integrating temporal usage pattern into personalized tag prediction. In Web Technologies and Applications, pages 354–365. Springer, 2012.
173
-
* R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD 2007, pages 506–514. Springer, 2007.
174
-
* R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems, pages 61–68. ACM, 2009.
175
-
* J. R. Anderson, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An integrated theory of the mind. Psychological Review, 111(4):1036–1050, 2004.
176
-
* J. K. Kruschke et al. Alcove: An exemplar-based connectionist model of category learning. Psychological review, 99(1):22–44, 1992.
177
-
* D. L Hintzman. Minerva 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers 16 (2), 96–101, 1984.
187
+
* A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies: Search and ranking. In The semantic web: research and applications, pages 411426. Springer, 2006.
188
+
* L. Zhang, J. Tang, and M. Zhang. Integrating temporal usage pattern into personalized tag prediction. In Web Technologies and Applications, pages 354365. Springer, 2012.
189
+
* R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD 2007, pages 506514. Springer, 2007.
190
+
* R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems, pages 6168. ACM, 2009.
191
+
* J. R. Anderson, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An integrated theory of the mind. Psychological Review, 111(4):10361050, 2004.
192
+
* J. K. Kruschke et al. Alcove: An exemplar-based connectionist model of category learning. Psychological review, 99(1):2244, 1992.
193
+
* D. L Hintzman. Minerva 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers 16 (2), 96101, 1984.
178
194
* N. Zheng and Q. Li. A recommender system based on tag and time information for social tagging systems. Expert Syst. Appl., 2011.
179
195
* C.-L. Huang, P.-H. Yeh, C.-W. Lin, and D.-C. Wu. Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowledge-Based Systems, 2014.
180
196
* B. C. Love, D. L. Medin, and T. M. Gureckis. Sustain: A network model of category learning. Psychological review, 111(2):309, 2004.
181
197
182
-
## Main contributor
183
-
* Dominik Kowald, Know-Center, Graz University of Technology, dkowald@know-center.at (general contact)
198
+
## Main contact and contributor
199
+
*[Dominik Kowald](http://www.dominikkowald.info/), Know-Center, Graz University of Technology, dkowald[AT]know[MINUS]center[DOT]at (general contact)
184
200
185
-
## Contacts and contributors (in alphabetically order)
186
-
* Simone Kopeinik, Knowledge Technologies Institute, Graz University of Technology, [email protected] (sustain resource recommender algorithm)
187
-
* Emanuel Lacic, Knowledge Technologies Institute, Graz University of Technology, [email protected] (huang, zheng and CIRTT resource recommender algorithms)
188
-
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, [email protected] (general contac)
189
-
* Christoph Trattner, Know-Center, [email protected] (general contact)
201
+
## Contacts and contributors
202
+
* Simone Kopeinik, Knowledge Technologies Institute, Graz University of Technology, simone [DOT][AT] tugraz [DOT] at (sustain resource recommender algorithm)
203
+
* Emanuel Lacic, Knowledge Technologies Institute, Graz University of Technology, elacic [AT] know [MINUS] center [DOT] at (huang, zheng and CIRTT resource recommender algorithms)
204
+
* Subhash Pujari, Knowledge Technologies Institute, Graz University of Technology, spujari [AT] student [DOT] tugraz [DOT] at (twitter hashtag recommender algorithms)
205
+
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, elisabeth [DOT] lex [AT] tugraz [DOT] at (general contact)
206
+
* Christoph Trattner, Know-Center, Graz University of Technology, ctrattner [AT] know [MINUS] center [DOT] at (general contact)
0 commit comments