Skip to content

Commit ea8d980

Browse files
committed
2 parents bac74d3 + efe97b4 commit ea8d980

File tree

1 file changed

+37
-19
lines changed

1 file changed

+37
-19
lines changed

README.md

Lines changed: 37 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ Furthermore, it contains algorithms to process datasets (e.g., p-core pruning, l
1212

1313
The software already contains four novel tag-recommender approaches based on cognitive science theory. The first one ([3Layers](http://www.christophtrattner.info/pubs/cikm2013.pdf)) (Seitlinger et al, 2013) uses topic information and is based on the ALCOVE/MINERVA2 theories (Krutschke, 1992; Hintzman, 1984). The second one ([BLL+C](http://delivery.acm.org/10.1145/2580000/2576934/p463-kowald.pdf)) (Kowald et al., 2014b) uses time information is based on the ACT-R theory (Anderson et al., 2004). The third one ([3LT](http://www.christophtrattner.info/pubs/msm8_kowald.pdf)) (Kowald et al., 2015b) is a combination of the former two approaches and integrates the time component on the level of tags and topics. Finally, the fourth one ([BLLac+MPr](http://www.christophtrattner.info/pubs/msm7_kowald.pdf)) extends the BLL+C algorithm with semantic correlations (Kowald et al., 2015a).
1414

15-
Based on our latest strand of research, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
15+
Additionally, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
1616

1717
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
1818
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
@@ -29,6 +29,8 @@ The source-code can be directly checked-out through this repository. It contains
2929
* ml_core for MovieLens
3030
* lastfm_core for LastFM
3131
* wiki_core for Wikipedia (based on bookmarks from Delicious)
32+
* twitter_core/researchers for the Twitter researchers dataset
33+
* twitter_core/general for the Twitter random dataset
3234

3335
## How-to-use
3436
The _tagrecommender_ .jar uses three parameters:
@@ -65,6 +67,12 @@ Data-Processing:
6567
* lda_samples for creating LDA topics for the resources in a dataset
6668
* tensor_samples for creating samples for the FM and PITF methods implemented in [PITF and FM algorithms](http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/)
6769
* mymedialite_samples for creating samples for the WRMF method implemented in [MyMediaLite](http://www.mymedialite.net/)
70+
* process_bibsonomy for converting the BibSonomy dataset into the TagRec format
71+
* process_citeulike for converting the CiteUlike dataset into the TagRec format
72+
* process_lastfm for converting the LastFM dataset into the TagRec format
73+
* process_ml for converting the MovieLens dataset into the TagRec format
74+
* process_del for converting the Delicious dataset into the TagRec format
75+
* process_flickr for converting the Flickr dataset into the TagRec format
6876

6977
, second the dataset(-directory):
7078
* bib for BibSonomy
@@ -74,6 +82,8 @@ Data-Processing:
7482
* ml for MovieLens
7583
* lastfm for LastFM
7684
* wiki for Wikipedia (based on bookmarks from Delicious)
85+
* twitter_res for the Twitter researchers dataset
86+
* twitter_gen for the Twitter random dataset
7787

7888
and third the filename (without file extension)
7989

@@ -117,6 +127,22 @@ for _k_ = 1 to 10 (or 20) - each line is one _k_
117127
0,5212146123336273;0,16408544726301685;0,22663857529082376 ...
118128

119129
## Citation
130+
131+
C. Trattner, D. Kowald and E. Lacic: [TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-Based Recommender Algorithms](http://www.christophtrattner.info/pubs/sigweb2015.pdf), ACM SIGWEB Newsletter, Spring 2015, ACM, New York, NY, USA, 2015. (invited)
132+
133+
_Bibtex:_
134+
`@article{Trattner:2015:TTT:2719943.2719946,
135+
author = {Trattner, Christoph and Kowald, Dominik and Lacic, Emanuel},
136+
title = {TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-based Recommender Algorithms},
137+
journal = {SIGWEB Newsl.},
138+
issue_date = {Winter 2015},
139+
year = {2015},
140+
pages = {3:1--3:10},
141+
numpages = {10},
142+
publisher = {ACM},
143+
address = {New York, NY, USA},
144+
}`
145+
120146
D. Kowald, E. Lacic, and C. Trattner. [Tagrec:Towards a standardized tag recommender benchmarking framework](http://www.christophtrattner.info/pubs/ht241-kowald.pdf). In Proceedings of the 25th ACM Conference on Hypertext and Social Media, HT'14, New York, NY, USA, 2014. ACM.
121147

122148
_Bibtex:_
@@ -132,29 +158,20 @@ _Bibtex:_
132158
address = {New York, NY, USA},
133159
}`
134160

135-
C. Trattner, D. Kowald and E. Lacic: [TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-Based Recommender Algorithms](http://www.christophtrattner.info/pubs/sigweb2015.pdf), ACM SIGWEB Newsletter, Spring 2015, ACM, New York, NY, USA, 2015. (invited)
136161

137-
_Bibtex:_
138-
`@article{Trattner:2015:TTT:2719943.2719946,
139-
author = {Trattner, Christoph and Kowald, Dominik and Lacic, Emanuel},
140-
title = {TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-based Recommender Algorithms},
141-
journal = {SIGWEB Newsl.},
142-
issue_date = {Winter 2015},
143-
year = {2015},
144-
pages = {3:1--3:10},
145-
numpages = {10},
146-
publisher = {ACM},
147-
address = {New York, NY, USA},
148-
}`
149162

150-
## References
163+
## Publications
164+
* C. Trattner, D. Kowald, P. Seitlinger, S. Kopeinik, S. and T. Ley: [Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems](http://www.christophtrattner.info/pubs/bll_journal_final.pdf), Journal of Web Science, 2016.
165+
* D. Kowald and E. Lex: [Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study](http://dl.acm.org/citation.cfm?id=2799664), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
166+
* S. Larrain, C. Trattner, D. Parra, E. Graells-Garrido and K. Norvag: [Good Times Bad Times: A Study on Recency Effects in Collaborative Filtering for Social Tagging](http://www.christophtrattner.info/pubs/recsys2015b.pdf), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
151167
* P. Seitlinger, D. Kowald, S. Kopeinik, I. Hasani-Mavriqi, T. Ley, and Elisabeth Lex: [Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics](http://arxiv.org/pdf/1501.07716v1.pdf). In Proc. of WWW'2015 Companion. ACM. 2015
152168
* D. Kowald, S. Kopeinik, P. Seitinger, T. Ley, D. Albert, and C. Trattner: [Refining Frequency-Based Tag Reuse Predictions by Means of Time and Semantic Context](http://www.christophtrattner.info/pubs/msm7_kowald.pdf). In Mining, Modeling, and Recommending 'Things' in Social Media, Lecture Notes in Computer Science, Vol. 8940, Springer, 2015a.
153169
* D. Kowald, P. Seitinger, S. Kopeinik, T. Ley, and C. Trattner: [Forgetting the Words but Remembering the Meaning: Modeling Forgetting in a Verbal and Semantic Tag Recommender](http://www.christophtrattner.info/pubs/msm8_kowald.pdf). In Mining, Modeling, and Recommending 'Things' in Social Media, Lecture Notes in Computer Science, Vol. 8940, Springer, 2015b.
154170
* D. Kowald, P. Seitlinger, C. Trattner, and T. Ley. [Long Time No See: The Probability of Reusing Tags as a Function of Frequency and Recency](http://www2014.kr/wp-content/uploads/2014/05/companion_p463.pdf). In Proceedings of the 23rd international conference on World Wide Web Companion, WWW '14, ACM, New York, NY, USA, 2014.
155171
* E. Lacic, D. Kowald, P. Seitlinger, C. Trattner, and D. Parra. [Recommending Items in Social Tagging Systems Using Tag and Time Information](http://www.christophtrattner.info/pubs/sp2014.pdf). In Proceedings of the 1st Social Personalization Workshop co-located with the 25th ACM Conference on Hypertext and Social Media, HT'14, ACM, New York, NY, USA, 2014.
156172
* P. Seitlinger, D. Kowald, C. Trattner, and T. Ley.: [Recommending Tags with a Model of Human Categorization](http://www.christophtrattner.info/pubs/cikm2013.pdf). In Proceedings of The ACM International Conference on Information and Knowledge Management (CIKM 2013), ACM, New York, NY, USA, 2013.
157-
* S. Larrain, C. Trattner, D. Parra, E. Graells-Garrido and K. Norvag: [Good Times Bad Times: A Study on Recency Effects in Collaborative Filtering for Social Tagging](http://www.christophtrattner.info/pubs/recsys2015b.pdf), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
173+
174+
## References
158175
* A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies: Search and ranking. In The semantic web: research and applications, pages 411–426. Springer, 2006.
159176
* L. Zhang, J. Tang, and M. Zhang. Integrating temporal usage pattern into personalized tag prediction. In Web Technologies and Applications, pages 354–365. Springer, 2012.
160177
* R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD 2007, pages 506–514. Springer, 2007.
@@ -167,10 +184,11 @@ _Bibtex:_
167184
* B. C. Love, D. L. Medin, and T. M. Gureckis. Sustain: A network model of category learning. Psychological review, 111(2):309, 2004.
168185

169186
## Main contributor
170-
* Dominik Kowald, Know-Center, Graz University of Technology, [email protected]
187+
* Dominik Kowald, Know-Center, Graz University of Technology, [email protected] (general contact)
171188

172189
## Contacts and contributors (in alphabetically order)
173190
* Simone Kopeinik, Knowledge Technologies Institute, Graz University of Technology, [email protected] (sustain resource recommender algorithm)
174191
* Emanuel Lacic, Knowledge Technologies Institute, Graz University of Technology, [email protected] (huang, zheng and CIRTT resource recommender algorithms)
175-
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, [email protected] (general contact)
176-
* Christoph Trattner, Norwegian University of Science and Technology Trondheim, [email protected] (general contact)
192+
* Subhash Pujari, Knowledge Technologies Institute, Graz University of Technology, [email protected] (twitter hashtag recommender algorithms)
193+
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, [email protected] (general contac)
194+
* Christoph Trattner, Know-Center, [email protected] (general contact)

0 commit comments

Comments
 (0)