You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+37-19Lines changed: 37 additions & 19 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -12,7 +12,7 @@ Furthermore, it contains algorithms to process datasets (e.g., p-core pruning, l
12
12
13
13
The software already contains four novel tag-recommender approaches based on cognitive science theory. The first one ([3Layers](http://www.christophtrattner.info/pubs/cikm2013.pdf)) (Seitlinger et al, 2013) uses topic information and is based on the ALCOVE/MINERVA2 theories (Krutschke, 1992; Hintzman, 1984). The second one ([BLL+C](http://delivery.acm.org/10.1145/2580000/2576934/p463-kowald.pdf)) (Kowald et al., 2014b) uses time information is based on the ACT-R theory (Anderson et al., 2004). The third one ([3LT](http://www.christophtrattner.info/pubs/msm8_kowald.pdf)) (Kowald et al., 2015b) is a combination of the former two approaches and integrates the time component on the level of tags and topics. Finally, the fourth one ([BLLac+MPr](http://www.christophtrattner.info/pubs/msm7_kowald.pdf)) extends the BLL+C algorithm with semantic correlations (Kowald et al., 2015a).
14
14
15
-
Based on our latest strand of research, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
15
+
Additionally, TagRec also contains algorithms for the personalized recommendation of resources / items in social tagging systems. In this respect TagRec includes a novel algorithm called [CIRTT](http://www.christophtrattner.info/pubs/sp2014.pdf) (Lacic et al., 2014) that integrates tag and time information using the BLL-equation coming from the ACT-R theory (Anderson et al, 2004). Furthermore, it contains another novel item-recommender called [SUSTAIN+CFu](http://arxiv.org/pdf/1501.07716v1.pdf) (Seitlinger et al., 2015) that improves user-based CF via integrating the addentional focus of users via the SUSTAIN model (Love et al., 2004).
16
16
17
17
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
18
18
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
@@ -29,6 +29,8 @@ The source-code can be directly checked-out through this repository. It contains
29
29
* ml_core for MovieLens
30
30
* lastfm_core for LastFM
31
31
* wiki_core for Wikipedia (based on bookmarks from Delicious)
32
+
* twitter_core/researchers for the Twitter researchers dataset
33
+
* twitter_core/general for the Twitter random dataset
32
34
33
35
## How-to-use
34
36
The _tagrecommender_ .jar uses three parameters:
@@ -65,6 +67,12 @@ Data-Processing:
65
67
* lda_samples for creating LDA topics for the resources in a dataset
66
68
* tensor_samples for creating samples for the FM and PITF methods implemented in [PITF and FM algorithms](http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/)
67
69
* mymedialite_samples for creating samples for the WRMF method implemented in [MyMediaLite](http://www.mymedialite.net/)
70
+
* process_bibsonomy for converting the BibSonomy dataset into the TagRec format
71
+
* process_citeulike for converting the CiteUlike dataset into the TagRec format
72
+
* process_lastfm for converting the LastFM dataset into the TagRec format
73
+
* process_ml for converting the MovieLens dataset into the TagRec format
74
+
* process_del for converting the Delicious dataset into the TagRec format
75
+
* process_flickr for converting the Flickr dataset into the TagRec format
68
76
69
77
, second the dataset(-directory):
70
78
* bib for BibSonomy
@@ -74,6 +82,8 @@ Data-Processing:
74
82
* ml for MovieLens
75
83
* lastfm for LastFM
76
84
* wiki for Wikipedia (based on bookmarks from Delicious)
85
+
* twitter_res for the Twitter researchers dataset
86
+
* twitter_gen for the Twitter random dataset
77
87
78
88
and third the filename (without file extension)
79
89
@@ -117,6 +127,22 @@ for _k_ = 1 to 10 (or 20) - each line is one _k_
C. Trattner, D. Kowald and E. Lacic: [TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-Based Recommender Algorithms](http://www.christophtrattner.info/pubs/sigweb2015.pdf), ACM SIGWEB Newsletter, Spring 2015, ACM, New York, NY, USA, 2015. (invited)
132
+
133
+
_Bibtex:_
134
+
`@article{Trattner:2015:TTT:2719943.2719946,
135
+
author = {Trattner, Christoph and Kowald, Dominik and Lacic, Emanuel},
136
+
title = {TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-based Recommender Algorithms},
137
+
journal = {SIGWEB Newsl.},
138
+
issue_date = {Winter 2015},
139
+
year = {2015},
140
+
pages = {3:1--3:10},
141
+
numpages = {10},
142
+
publisher = {ACM},
143
+
address = {New York, NY, USA},
144
+
}`
145
+
120
146
D. Kowald, E. Lacic, and C. Trattner. [Tagrec:Towards a standardized tag recommender benchmarking framework](http://www.christophtrattner.info/pubs/ht241-kowald.pdf). In Proceedings of the 25th ACM Conference on Hypertext and Social Media, HT'14, New York, NY, USA, 2014. ACM.
121
147
122
148
_Bibtex:_
@@ -132,29 +158,20 @@ _Bibtex:_
132
158
address = {New York, NY, USA},
133
159
}`
134
160
135
-
C. Trattner, D. Kowald and E. Lacic: [TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-Based Recommender Algorithms](http://www.christophtrattner.info/pubs/sigweb2015.pdf), ACM SIGWEB Newsletter, Spring 2015, ACM, New York, NY, USA, 2015. (invited)
136
161
137
-
_Bibtex:_
138
-
`@article{Trattner:2015:TTT:2719943.2719946,
139
-
author = {Trattner, Christoph and Kowald, Dominik and Lacic, Emanuel},
140
-
title = {TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-based Recommender Algorithms},
141
-
journal = {SIGWEB Newsl.},
142
-
issue_date = {Winter 2015},
143
-
year = {2015},
144
-
pages = {3:1--3:10},
145
-
numpages = {10},
146
-
publisher = {ACM},
147
-
address = {New York, NY, USA},
148
-
}`
149
162
150
-
## References
163
+
## Publications
164
+
* C. Trattner, D. Kowald, P. Seitlinger, S. Kopeinik, S. and T. Ley: [Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems](http://www.christophtrattner.info/pubs/bll_journal_final.pdf), Journal of Web Science, 2016.
165
+
* D. Kowald and E. Lex: [Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study](http://dl.acm.org/citation.cfm?id=2799664), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
166
+
* S. Larrain, C. Trattner, D. Parra, E. Graells-Garrido and K. Norvag: [Good Times Bad Times: A Study on Recency Effects in Collaborative Filtering for Social Tagging](http://www.christophtrattner.info/pubs/recsys2015b.pdf), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
151
167
* P. Seitlinger, D. Kowald, S. Kopeinik, I. Hasani-Mavriqi, T. Ley, and Elisabeth Lex: [Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics](http://arxiv.org/pdf/1501.07716v1.pdf). In Proc. of WWW'2015 Companion. ACM. 2015
152
168
* D. Kowald, S. Kopeinik, P. Seitinger, T. Ley, D. Albert, and C. Trattner: [Refining Frequency-Based Tag Reuse Predictions by Means of Time and Semantic Context](http://www.christophtrattner.info/pubs/msm7_kowald.pdf). In Mining, Modeling, and Recommending 'Things' in Social Media, Lecture Notes in Computer Science, Vol. 8940, Springer, 2015a.
153
169
* D. Kowald, P. Seitinger, S. Kopeinik, T. Ley, and C. Trattner: [Forgetting the Words but Remembering the Meaning: Modeling Forgetting in a Verbal and Semantic Tag Recommender](http://www.christophtrattner.info/pubs/msm8_kowald.pdf). In Mining, Modeling, and Recommending 'Things' in Social Media, Lecture Notes in Computer Science, Vol. 8940, Springer, 2015b.
154
170
* D. Kowald, P. Seitlinger, C. Trattner, and T. Ley. [Long Time No See: The Probability of Reusing Tags as a Function of Frequency and Recency](http://www2014.kr/wp-content/uploads/2014/05/companion_p463.pdf). In Proceedings of the 23rd international conference on World Wide Web Companion, WWW '14, ACM, New York, NY, USA, 2014.
155
171
* E. Lacic, D. Kowald, P. Seitlinger, C. Trattner, and D. Parra. [Recommending Items in Social Tagging Systems Using Tag and Time Information](http://www.christophtrattner.info/pubs/sp2014.pdf). In Proceedings of the 1st Social Personalization Workshop co-located with the 25th ACM Conference on Hypertext and Social Media, HT'14, ACM, New York, NY, USA, 2014.
156
172
* P. Seitlinger, D. Kowald, C. Trattner, and T. Ley.: [Recommending Tags with a Model of Human Categorization](http://www.christophtrattner.info/pubs/cikm2013.pdf). In Proceedings of The ACM International Conference on Information and Knowledge Management (CIKM 2013), ACM, New York, NY, USA, 2013.
157
-
* S. Larrain, C. Trattner, D. Parra, E. Graells-Garrido and K. Norvag: [Good Times Bad Times: A Study on Recency Effects in Collaborative Filtering for Social Tagging](http://www.christophtrattner.info/pubs/recsys2015b.pdf), In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), ACM, New York, NY, USA, 2015.
173
+
174
+
## References
158
175
* A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies: Search and ranking. In The semantic web: research and applications, pages 411–426. Springer, 2006.
159
176
* L. Zhang, J. Tang, and M. Zhang. Integrating temporal usage pattern into personalized tag prediction. In Web Technologies and Applications, pages 354–365. Springer, 2012.
160
177
* R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD 2007, pages 506–514. Springer, 2007.
@@ -167,10 +184,11 @@ _Bibtex:_
167
184
* B. C. Love, D. L. Medin, and T. M. Gureckis. Sustain: A network model of category learning. Psychological review, 111(2):309, 2004.
168
185
169
186
## Main contributor
170
-
* Dominik Kowald, Know-Center, Graz University of Technology, [email protected]
187
+
* Dominik Kowald, Know-Center, Graz University of Technology, [email protected] (general contact)
171
188
172
189
## Contacts and contributors (in alphabetically order)
173
190
* Simone Kopeinik, Knowledge Technologies Institute, Graz University of Technology, [email protected] (sustain resource recommender algorithm)
174
191
* Emanuel Lacic, Knowledge Technologies Institute, Graz University of Technology, [email protected] (huang, zheng and CIRTT resource recommender algorithms)
175
-
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, [email protected] (general contact)
176
-
* Christoph Trattner, Norwegian University of Science and Technology Trondheim, [email protected] (general contact)
192
+
* Subhash Pujari, Knowledge Technologies Institute, Graz University of Technology, [email protected] (twitter hashtag recommender algorithms)
193
+
* Elisabeth Lex, Knowledge Technologies Institute, Graz University of Technology, [email protected] (general contac)
194
+
* Christoph Trattner, Know-Center, [email protected] (general contact)
0 commit comments