@@ -253,7 +253,7 @@ theorem pi_rule {I : Type*} {n} [IndexType I n] [Fold.{_,u'} I] [Fold.{_,u} I]
253253 case adjoint =>
254254 intro x y
255255 have h := fun i => (hf i).adjoint
256- simp[Inner.inner, h ]
256+ simp[Inner.inner]
257257 sorry_proof
258258 case is_linear => apply IsContinuousLinearMap.pi_rule _ (fun i => (hf i).is_linear)
259259
@@ -376,7 +376,7 @@ theorem HAdd.hAdd.arg_a0a1.HasAdjoint_simple_rule :
376376 (fun x : X×X => x.1 + x.2 )
377377 (fun x => (x,x)) := by
378378 constructor
379- case adjoint => simp[AdjointSpace.inner_prod_split, AdjointSpace.inner_add_left, AdjointSpace.inner_add_right ]
379+ case adjoint => simp[AdjointSpace.inner_prod_split, AdjointSpace.inner_add_left]
380380 case is_linear => fun_prop
381381
382382@[data_synth]
@@ -396,7 +396,7 @@ theorem HSub.hSub.arg_a0a1.HasAdjoint_simple_rule :
396396 (fun x : X×X => x.1 - x.2 )
397397 (fun x => (x, -x)) := by
398398 constructor
399- case adjoint => simp[AdjointSpace.inner_prod_split, AdjointSpace.inner_add_left, AdjointSpace.inner_add_right, sub_eq_add_neg]
399+ case adjoint => simp[AdjointSpace.inner_prod_split, AdjointSpace.inner_add_left,sub_eq_add_neg]
400400 case is_linear => fun_prop
401401
402402@[data_synth]
@@ -480,7 +480,7 @@ theorem HSMul.hSMul.arg_a1.HasAdjoint_simple_rule_nat (n : ℕ) :
480480 case adjoint =>
481481 intro x y;
482482 simp [← Nat.cast_smul_eq_nsmul (R:=K),AdjointSpace.inner_smul_left,
483- AdjointSpace.inner_smul_right,AdjointSpace.inner_add_right ]
483+ AdjointSpace.inner_smul_right]
484484 case is_linear =>
485485 simp [← Nat.cast_smul_eq_nsmul (R:=K)]; fun_prop
486486
@@ -507,7 +507,7 @@ theorem HSMul.hSMul.arg_a1.HasAdjointUpdate_simple_rule_nat (n : ℕ) :
507507 case adjoint =>
508508 intro x y;
509509 simp [← Int.cast_smul_eq_zsmul (R:=K),AdjointSpace.inner_smul_left,
510- AdjointSpace.inner_smul_right,AdjointSpace.inner_add_right ]
510+ AdjointSpace.inner_smul_right]
511511 case is_linear =>
512512 simp [← Int.cast_smul_eq_zsmul (R:=K)]; fun_prop
513513
@@ -684,7 +684,7 @@ theorem Finset.sum.arg_f.HasAdjoint_simp_rule
684684 (A : Finset I) :
685685 HasAdjoint K
686686 (fun f : I → X => A.sum (fun i => f i))
687- (fun k i => A.toSet .indicator (fun _ => k) i) := by
687+ (fun k i => (A : Set I) .indicator (fun _ => k) i) := by
688688 constructor
689689 case adjoint => intro f y; simp[Inner.inner]; sorry_proof -- missing API
690690 case is_linear => fun_prop
@@ -697,7 +697,7 @@ theorem Finset.sum.arg_f.HasAdjoint_simp_rule'
697697 (A : Finset I) :
698698 HasAdjoint K
699699 (fun f : I → X => A.sum f)
700- (fun k i => A.toSet .indicator (fun _ => k) i) := by
700+ (fun k i => (A : Set I) .indicator (fun _ => k) i) := by
701701 constructor
702702 case adjoint => intro f y; simp[Inner.inner]; sorry_proof -- missing API
703703 case is_linear => fun_prop
@@ -708,7 +708,7 @@ theorem Finset.sum.arg_f.HasAdjointUpdate_simp_rule
708708 (A : Finset I) :
709709 HasAdjointUpdate K
710710 (fun f : I → X => A.sum (fun i => f i))
711- (fun k f i => f i + A.toSet .indicator (fun _ => k) i) := by
711+ (fun k f i => f i + (A : Set I) .indicator (fun _ => k) i) := by
712712 constructor
713713 case adjoint => intro f y; simp[Inner.inner]; sorry_proof -- missing API
714714 case is_linear => fun_prop
@@ -721,7 +721,7 @@ theorem Finset.sum.arg_f.HasAdjointUpdate_simp_rule'
721721 (A : Finset I) :
722722 HasAdjointUpdate K
723723 (fun f : I → X => A.sum f)
724- (fun k f i => f i + A.toSet .indicator (fun _ => k) i) := by
724+ (fun k f i => f i + (A : Set I) .indicator (fun _ => k) i) := by
725725 constructor
726726 case adjoint => intro f y; simp[Inner.inner]; sorry_proof -- missing API
727727 case is_linear => fun_prop
@@ -763,7 +763,7 @@ theorem Inner.inner.arg_a0.HasAdjoint_simple_rule_real
763763 constructor
764764 case adjoint =>
765765 intro x k
766- simp[AdjointSpace.inner_smul_right, ScalarInner.inner_eq_inner_re_im]
766+ simp[ScalarInner.inner_eq_inner_re_im]
767767 -- lhs has complex inner product and rhs has real inner product
768768 -- it should work out
769769 sorry_proof
0 commit comments