@@ -44,7 +44,7 @@ lemma B_odd (n: ℕ) (h_odd : Odd n): ∀ (i: ℕ)(l r: List Γ)(init_cfg: Cfg),
4444nth_cfg init_cfg i = ⟨B, ⟨one,
4545 Turing.ListBlank.mk (zero :: l),
4646 Turing.ListBlank.mk (List.replicate n one ++ zero :: r)⟩⟩ →
47- ∃ j>i, nth_cfg init_cfg j = ⟨C, ⟨zero,
47+ nth_cfg init_cfg (i + (n^ 2 + 7 * n)/ 2 + 4 ) = ⟨C, ⟨zero,
4848 Turing.ListBlank.mk (List.replicate ((n+1 )/2 ) one ++ l),
4949 Turing.ListBlank.mk (List.replicate (1 +(n+1 )/2 ) one ++ r)⟩⟩
5050:= by
@@ -62,30 +62,48 @@ cases n with
6262 forward h
6363 forward h
6464 forward h
65- use ( 8 +i)
65+ ring_nf at *
6666 simp [h]
6767 | succ n => ring_nf at h
6868 apply B_step at h
6969 specialize IH n (by omega)
7070 apply IH at h
71- . obtain ⟨j, _, h⟩ := h
72- use j
73- constructor
74- any_goals omega
71+ . ring_nf at *
72+ have g : ( 4 + i + ( 18 + n * 11 + n ^ 2 ) / 2 ) =
73+ ( 13 + i + n * 2 + (n * 7 + n ^ 2 ) / 2 ) := by omega
74+ rw [g]
7575 simp [h]
76- ring_nf
77- have h : (3 +n)/2 = (1 +n)/2 +1 := by omega
78- rw [h]
79- ring_nf
80- rw [List.append_cons]
81- rw [← List.replicate_one]
82- rw [List.replicate_append_replicate]
83- ring_nf
84- rw [List.append_cons]
85- rw [← List.replicate_one]
86- rw [List.replicate_append_replicate]
87- ring_nf
88- tauto
76+ constructor
77+ . rw [List.append_cons]
78+ rw [← List.replicate_one]
79+ rw [List.replicate_append_replicate]
80+ ring_nf
81+ apply congr
82+ any_goals rfl
83+ apply congr
84+ any_goals rfl
85+ apply congr
86+ any_goals rfl
87+ apply congr
88+ any_goals rfl
89+ apply congr
90+ any_goals rfl
91+ omega
92+ . rw [List.append_cons]
93+ rw [← List.replicate_one]
94+ rw [List.replicate_append_replicate]
95+ ring_nf
96+ apply congr
97+ any_goals rfl
98+ apply congr
99+ any_goals rfl
100+ apply congr
101+ any_goals rfl
102+ apply congr
103+ any_goals rfl
104+ apply congr
105+ any_goals rfl
106+ omega
89107 . obtain ⟨k, h_odd⟩ := h_odd
90108 cases k with
91109 | zero => omega
0 commit comments