|
4 | 4 | using namespace std; |
5 | 5 |
|
6 | 6 | void FannTest::SetUp() { |
7 | | - //ensure random generator is seeded at a known value to ensure reproducible results |
8 | | - srand(0); |
9 | | - fann_disable_seed_rand(); |
| 7 | + // ensure random generator is seeded at a known value to ensure reproducible results |
| 8 | + srand(0); |
| 9 | + fann_disable_seed_rand(); |
10 | 10 | } |
11 | 11 |
|
12 | 12 | void FannTest::TearDown() { |
13 | | - net.destroy(); |
14 | | - data.destroy_train(); |
| 13 | + net.destroy(); |
| 14 | + data.destroy_train(); |
15 | 15 | } |
16 | 16 |
|
17 | 17 | void FannTest::AssertCreate(neural_net &net, unsigned int numLayers, const unsigned int *layers, |
18 | 18 | unsigned int neurons, unsigned int connections) { |
19 | | - EXPECT_EQ(numLayers, net.get_num_layers()); |
20 | | - EXPECT_EQ(layers[0], net.get_num_input()); |
21 | | - EXPECT_EQ(layers[numLayers - 1], net.get_num_output()); |
22 | | - unsigned int *layers_res = new unsigned int[numLayers]; |
23 | | - net.get_layer_array(layers_res); |
24 | | - for (unsigned int i = 0; i < numLayers; i++) { |
25 | | - EXPECT_EQ(layers[i], layers_res[i]); |
26 | | - } |
27 | | - delete[] layers_res; |
| 19 | + EXPECT_EQ(numLayers, net.get_num_layers()); |
| 20 | + EXPECT_EQ(layers[0], net.get_num_input()); |
| 21 | + EXPECT_EQ(layers[numLayers - 1], net.get_num_output()); |
| 22 | + unsigned int *layers_res = new unsigned int[numLayers]; |
| 23 | + net.get_layer_array(layers_res); |
| 24 | + for (unsigned int i = 0; i < numLayers; i++) { |
| 25 | + EXPECT_EQ(layers[i], layers_res[i]); |
| 26 | + } |
| 27 | + delete[] layers_res; |
28 | 28 |
|
29 | | - EXPECT_EQ(neurons, net.get_total_neurons()); |
30 | | - EXPECT_EQ(connections, net.get_total_connections()); |
| 29 | + EXPECT_EQ(neurons, net.get_total_neurons()); |
| 30 | + EXPECT_EQ(connections, net.get_total_connections()); |
31 | 31 |
|
32 | | - AssertWeights(net, -0.09, 0.09, 0.0); |
| 32 | + AssertWeights(net, -0.09, 0.09, 0.0); |
33 | 33 | } |
34 | 34 |
|
35 | | -void FannTest::AssertCreateAndCopy(neural_net &net, unsigned int numLayers, const unsigned int *layers, unsigned int neurons, |
| 35 | +void FannTest::AssertCreateAndCopy(neural_net &net, unsigned int numLayers, |
| 36 | + const unsigned int *layers, unsigned int neurons, |
36 | 37 | unsigned int connections) { |
37 | | - AssertCreate(net, numLayers, layers, neurons, connections); |
38 | | - neural_net net_copy(net); |
39 | | - AssertCreate(net_copy, numLayers, layers, neurons, connections); |
| 38 | + AssertCreate(net, numLayers, layers, neurons, connections); |
| 39 | + neural_net net_copy(net); |
| 40 | + AssertCreate(net_copy, numLayers, layers, neurons, connections); |
40 | 41 | } |
41 | 42 |
|
42 | 43 | void FannTest::AssertWeights(neural_net &net, fann_type min, fann_type max, fann_type avg) { |
43 | | - connection *connections = new connection[net.get_total_connections()]; |
44 | | - net.get_connection_array(connections); |
| 44 | + connection *connections = new connection[net.get_total_connections()]; |
| 45 | + net.get_connection_array(connections); |
45 | 46 |
|
46 | | - fann_type minWeight = connections[0].weight; |
47 | | - fann_type maxWeight = connections[0].weight; |
48 | | - fann_type totalWeight = 0.0; |
49 | | - for (int i = 1; i < net.get_total_connections(); ++i) { |
50 | | - if (connections[i].weight < minWeight) |
51 | | - minWeight = connections[i].weight; |
52 | | - if (connections[i].weight > maxWeight) |
53 | | - maxWeight = connections[i].weight; |
54 | | - totalWeight += connections[i].weight; |
55 | | - } |
| 47 | + fann_type minWeight = connections[0].weight; |
| 48 | + fann_type maxWeight = connections[0].weight; |
| 49 | + fann_type totalWeight = 0.0; |
| 50 | + for (int i = 1; i < net.get_total_connections(); ++i) { |
| 51 | + if (connections[i].weight < minWeight) minWeight = connections[i].weight; |
| 52 | + if (connections[i].weight > maxWeight) maxWeight = connections[i].weight; |
| 53 | + totalWeight += connections[i].weight; |
| 54 | + } |
56 | 55 |
|
57 | | - EXPECT_NEAR(min, minWeight, 0.05); |
58 | | - EXPECT_NEAR(max, maxWeight, 0.05); |
59 | | - EXPECT_NEAR(avg, totalWeight / (fann_type) net.get_total_connections(), 0.5); |
| 56 | + EXPECT_NEAR(min, minWeight, 0.05); |
| 57 | + EXPECT_NEAR(max, maxWeight, 0.05); |
| 58 | + EXPECT_NEAR(avg, totalWeight / (fann_type)net.get_total_connections(), 0.5); |
60 | 59 | } |
61 | 60 |
|
62 | 61 | TEST_F(FannTest, CreateStandardThreeLayers) { |
63 | | - neural_net net(LAYER, 3, 2, 3, 4); |
64 | | - unsigned int layers[] = {2, 3, 4}; |
65 | | - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 62 | + neural_net net(LAYER, 3, 2, 3, 4); |
| 63 | + unsigned int layers[] = {2, 3, 4}; |
| 64 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
66 | 65 | } |
67 | 66 |
|
68 | 67 | TEST_F(FannTest, CreateStandardThreeLayersUsingCreateMethod) { |
69 | | - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
70 | | - unsigned int layers[] = {2, 3, 4}; |
71 | | - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 68 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 69 | + unsigned int layers[] = {2, 3, 4}; |
| 70 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
72 | 71 | } |
73 | 72 |
|
74 | 73 | TEST_F(FannTest, CreateStandardFourLayersArray) { |
75 | | - unsigned int layers[] = {2, 3, 4, 5}; |
76 | | - neural_net net(LAYER, 4, layers); |
77 | | - AssertCreateAndCopy(net, 4, layers, 17, 50); |
| 74 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 75 | + neural_net net(LAYER, 4, layers); |
| 76 | + AssertCreateAndCopy(net, 4, layers, 17, 50); |
78 | 77 | } |
79 | 78 |
|
80 | 79 | TEST_F(FannTest, CreateStandardFourLayersArrayUsingCreateMethod) { |
81 | | - unsigned int layers[] = {2, 3, 4, 5}; |
82 | | - ASSERT_TRUE(net.create_standard_array(4, layers)); |
83 | | - AssertCreateAndCopy(net, 4, layers, 17, 50); |
| 80 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 81 | + ASSERT_TRUE(net.create_standard_array(4, layers)); |
| 82 | + AssertCreateAndCopy(net, 4, layers, 17, 50); |
84 | 83 | } |
85 | 84 |
|
86 | 85 | TEST_F(FannTest, CreateStandardFourLayersVector) { |
87 | | - vector<unsigned int> layers{2, 3, 4, 5}; |
88 | | - neural_net net(LAYER, layers.begin(), layers.end()); |
89 | | - AssertCreateAndCopy(net, 4, layers.data(), 17, 50); |
| 86 | + vector<unsigned int> layers{2, 3, 4, 5}; |
| 87 | + neural_net net(LAYER, layers.begin(), layers.end()); |
| 88 | + AssertCreateAndCopy(net, 4, layers.data(), 17, 50); |
90 | 89 | } |
91 | 90 |
|
92 | 91 | TEST_F(FannTest, CreateSparseFourLayers) { |
93 | | - neural_net net(0.5, 4, 2, 3, 4, 5); |
94 | | - unsigned int layers[] = {2, 3, 4, 5}; |
95 | | - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 92 | + neural_net net(0.5, 4, 2, 3, 4, 5); |
| 93 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 94 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
96 | 95 | } |
97 | 96 |
|
98 | 97 | TEST_F(FannTest, CreateSparseFourLayersUsingCreateMethod) { |
99 | | - ASSERT_TRUE(net.create_sparse(0.5f, 4, 2, 3, 4, 5)); |
100 | | - unsigned int layers[] = {2, 3, 4, 5}; |
101 | | - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 98 | + ASSERT_TRUE(net.create_sparse(0.5f, 4, 2, 3, 4, 5)); |
| 99 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 100 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
102 | 101 | } |
103 | 102 |
|
104 | 103 | TEST_F(FannTest, CreateSparseArrayFourLayers) { |
105 | | - unsigned int layers[] = {2, 3, 4, 5}; |
106 | | - neural_net net(0.5f, 4, layers); |
107 | | - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 104 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 105 | + neural_net net(0.5f, 4, layers); |
| 106 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
108 | 107 | } |
109 | 108 |
|
110 | 109 | TEST_F(FannTest, CreateSparseArrayFourLayersUsingCreateMethod) { |
111 | | - unsigned int layers[] = {2, 3, 4, 5}; |
112 | | - ASSERT_TRUE(net.create_sparse_array(0.5f, 4, layers)); |
113 | | - AssertCreateAndCopy(net, 4, layers, 17, 31); |
| 110 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 111 | + ASSERT_TRUE(net.create_sparse_array(0.5f, 4, layers)); |
| 112 | + AssertCreateAndCopy(net, 4, layers, 17, 31); |
114 | 113 | } |
115 | 114 |
|
116 | 115 | TEST_F(FannTest, CreateSparseArrayWithMinimalConnectivity) { |
117 | | - unsigned int layers[] = {2, 2, 2}; |
118 | | - neural_net net(0.01f, 3, layers); |
119 | | - AssertCreateAndCopy(net, 3, layers, 8, 8); |
| 116 | + unsigned int layers[] = {2, 2, 2}; |
| 117 | + neural_net net(0.01f, 3, layers); |
| 118 | + AssertCreateAndCopy(net, 3, layers, 8, 8); |
120 | 119 | } |
121 | 120 |
|
122 | 121 | TEST_F(FannTest, CreateShortcutFourLayers) { |
123 | | - neural_net net(SHORTCUT, 4, 2, 3, 4, 5); |
124 | | - unsigned int layers[] = {2, 3, 4, 5}; |
125 | | - AssertCreateAndCopy(net, 4, layers, 15, 83); |
126 | | - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 122 | + neural_net net(SHORTCUT, 4, 2, 3, 4, 5); |
| 123 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 124 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 125 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
127 | 126 | } |
128 | 127 |
|
129 | 128 | TEST_F(FannTest, CreateShortcutFourLayersUsingCreateMethod) { |
130 | | - ASSERT_TRUE(net.create_shortcut(4, 2, 3, 4, 5)); |
131 | | - unsigned int layers[] = {2, 3, 4, 5}; |
132 | | - AssertCreateAndCopy(net, 4, layers, 15, 83); |
133 | | - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 129 | + ASSERT_TRUE(net.create_shortcut(4, 2, 3, 4, 5)); |
| 130 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 131 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 132 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
134 | 133 | } |
135 | 134 |
|
136 | 135 | TEST_F(FannTest, CreateShortcutArrayFourLayers) { |
137 | | - unsigned int layers[] = {2, 3, 4, 5}; |
138 | | - neural_net net(SHORTCUT, 4, layers); |
139 | | - AssertCreateAndCopy(net, 4, layers, 15, 83); |
140 | | - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 136 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 137 | + neural_net net(SHORTCUT, 4, layers); |
| 138 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 139 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
141 | 140 | } |
142 | 141 |
|
143 | 142 | TEST_F(FannTest, CreateShortcutArrayFourLayersUsingCreateMethod) { |
144 | | - unsigned int layers[] = {2, 3, 4, 5}; |
145 | | - ASSERT_TRUE(net.create_shortcut_array(4, layers)); |
146 | | - AssertCreateAndCopy(net, 4, layers, 15, 83); |
147 | | - EXPECT_EQ(SHORTCUT, net.get_network_type()); |
| 143 | + unsigned int layers[] = {2, 3, 4, 5}; |
| 144 | + ASSERT_TRUE(net.create_shortcut_array(4, layers)); |
| 145 | + AssertCreateAndCopy(net, 4, layers, 15, 83); |
| 146 | + EXPECT_EQ(SHORTCUT, net.get_network_type()); |
148 | 147 | } |
149 | 148 |
|
150 | 149 | TEST_F(FannTest, CreateFromFile) { |
151 | | - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
152 | | - neural_net netToBeSaved(LAYER, 3, 2, 3, 4); |
153 | | - ASSERT_TRUE(netToBeSaved.save("tmpfile")); |
| 150 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 151 | + neural_net netToBeSaved(LAYER, 3, 2, 3, 4); |
| 152 | + ASSERT_TRUE(netToBeSaved.save("tmpfile")); |
154 | 153 |
|
155 | | - neural_net netToBeLoaded("tmpfile"); |
156 | | - unsigned int layers[] = {2, 3, 4}; |
157 | | - AssertCreateAndCopy(netToBeLoaded, 3, layers, 11, 25); |
| 154 | + neural_net netToBeLoaded("tmpfile"); |
| 155 | + unsigned int layers[] = {2, 3, 4}; |
| 156 | + AssertCreateAndCopy(netToBeLoaded, 3, layers, 11, 25); |
158 | 157 | } |
159 | 158 |
|
160 | 159 | TEST_F(FannTest, CreateFromFileUsingCreateMethod) { |
161 | | - ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
162 | | - neural_net inputNet(LAYER, 3, 2, 3, 4); |
163 | | - ASSERT_TRUE(inputNet.save("tmpfile")); |
| 160 | + ASSERT_TRUE(net.create_standard(3, 2, 3, 4)); |
| 161 | + neural_net inputNet(LAYER, 3, 2, 3, 4); |
| 162 | + ASSERT_TRUE(inputNet.save("tmpfile")); |
164 | 163 |
|
165 | | - ASSERT_TRUE(net.create_from_file("tmpfile")); |
| 164 | + ASSERT_TRUE(net.create_from_file("tmpfile")); |
166 | 165 |
|
167 | | - unsigned int layers[] = {2, 3, 4}; |
168 | | - AssertCreateAndCopy(net, 3, layers, 11, 25); |
| 166 | + unsigned int layers[] = {2, 3, 4}; |
| 167 | + AssertCreateAndCopy(net, 3, layers, 11, 25); |
169 | 168 | } |
170 | 169 |
|
171 | 170 | TEST_F(FannTest, RandomizeWeights) { |
172 | | - neural_net net(LAYER, 2, 20, 10); |
173 | | - net.randomize_weights(-1.0, 1.0); |
174 | | - AssertWeights(net, -1.0, 1.0, 0); |
| 171 | + neural_net net(LAYER, 2, 20, 10); |
| 172 | + net.randomize_weights(-1.0, 1.0); |
| 173 | + AssertWeights(net, -1.0, 1.0, 0); |
175 | 174 | } |
0 commit comments