AnimatedDiff isnt working, produces a black output. Whats the reason> #88
Unanswered
visualhippocracy
asked this question in
Q&A
Replies: 1 comment
-
|
I think you use wrong sd model. You need to select sd1.5 non-inpainting model inside animatediff tab |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi,
So i tried multiple settings but animateddiff only gives black output.
The following is the error i get
Use cn inpaint instead of sd inpaint
2024-07-15 03:03:07,216 - AnimateDiff - INFO - AnimateDiff process start.
2024-07-15 03:03:07,232 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet middle block.
2024-07-15 03:03:07,232 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet input blocks.
2024-07-15 03:03:07,233 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet output blocks.
2024-07-15 03:03:07,233 - AnimateDiff - INFO - Setting DDIM alpha.
2024-07-15 03:03:07,237 - AnimateDiff - INFO - Injection finished.
2024-07-15 03:03:07,238 - AnimateDiff - INFO - AnimateDiff + ControlNet will generate 6 frames.
2024-07-15 03:03:07,301 - ControlNet - INFO - unit_separate = False, style_align = False
2024-07-15 03:03:07,301 - ControlNet - INFO - Loading model from cache: control_v11p_sd15_inpaint [ebff9138]
2024-07-15 03:03:07,302 - ControlNet - INFO - AnimateDiff + ControlNet inpaint_only receive the following parameters:
2024-07-15 03:03:07,303 - ControlNet - INFO - batch control images: D:\out\out_606395167_1720992760\fragment_1\frames
2024-07-15 03:03:07,529 - ControlNet - INFO - Using preprocessor: inpaint_only
2024-07-15 03:03:07,529 - ControlNet - INFO - preprocessor resolution = -1
100%|████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:01<00:00, 5.46it/s]
2024-07-15 03:03:08,735 - ControlNet - INFO - ControlNet Hooked - Time = 1.442753553390503
2024-07-15 03:03:10,134 - AnimateDiff - INFO - Randomizing init_latent according to [1.0, 0.96875, 0.9375, 0.90625, 0.875, 0.84375].
*** Error running before_process_batch: C:\Users\Dhruv\SDXL\extensions\sd-webui-animatediff\scripts\animatediff.py
Traceback (most recent call last):
File "C:\Users\Dhruv\SDXL\modules\scripts.py", line 833, in before_process_batch
script.before_process_batch(p, *script_args, **kwargs)
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-animatediff\scripts\animatediff.py", line 79, in before_process_batch
AnimateDiffI2VLatent().randomize(p, params)
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-animatediff\scripts\animatediff_latent.py", line 84, in randomize
p.init_latent = p.init_latent * init_alpha + p.rng.next() * (1 - init_alpha)
RuntimeError: The size of tensor a (12) must match the size of tensor b (6) at non-singleton dimension 0
0%| | 0/20 [00:00<?, ?it/s]2024-07-15 03:03:10,195 - AnimateDiff - INFO - inner model forward hooked
2024-07-15 03:03:11,509 - ControlNet - INFO - ControlNet used torch.float32 VAE to encode torch.Size([12, 4, 64, 64]).
100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:29<00:00, 1.50s/it]
*** A tensor with all NaNs was produced in VAE. Use --disable-nan-check commandline argument to disable this check. ***
Traceback (most recent call last):
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-replacer\replacer\video_animatediff.py", line 132, in animatediffGenerate
processed = processFragment(fragmentPath, initImage, gArgs)
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-replacer\replacer\video_animatediff.py", line 25, in processFragment
processed, _ = inpaint(initImage, gArgs)
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-replacer\replacer\inpaint.py", line 97, in inpaint
processed = process_images(p)
File "C:\Users\Dhruv\SDXL\modules\processing.py", line 845, in process_images
res = process_images_inner(p)
File "C:\Users\Dhruv\SDXL\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 48, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "C:\Users\Dhruv\SDXL\modules\processing.py", line 993, in process_images_inner
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
File "C:\Users\Dhruv\SDXL\modules\processing.py", line 654, in decode_latent_batch
raise e
File "C:\Users\Dhruv\SDXL\modules\processing.py", line 638, in decode_latent_batch
devices.test_for_nans(sample, "vae")
File "C:\Users\Dhruv\SDXL\modules\devices.py", line 255, in test_for_nans
raise NansException(message)
modules.devices.NansException: A tensor with all NaNs was produced in VAE. Use --disable-nan-check commandline argument to disable this check.
merging fragments
0it [00:00, ?it/s]
What could be casuing this? Disabling nan check didnt do anything. It just throw this error, but still produces black output
Beta Was this translation helpful? Give feedback.
All reactions