Skip to content

Commit 9f63385

Browse files
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
1 parent 0c5ef1f commit 9f63385

File tree

1 file changed

+14
-13
lines changed

1 file changed

+14
-13
lines changed

maths/perfect_cube.py

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
def perfect_cube(n: int) -> bool:
22
"""
33
Check if a number is a perfect cube or not.
4-
4+
55
Note: This method uses floating point arithmetic which may be
66
imprecise for very large numbers.
7-
7+
88
>>> perfect_cube(27)
99
True
1010
>>> perfect_cube(64)
@@ -30,12 +30,12 @@ def perfect_cube(n: int) -> bool:
3030
is_negative = True
3131
else:
3232
is_negative = False
33-
33+
3434
val = n ** (1 / 3)
3535
# Round to avoid floating point precision issues
3636
rounded_val = round(val)
3737
result = rounded_val * rounded_val * rounded_val == n
38-
38+
3939
# For negative numbers, we need to check if the cube root would be negative
4040
return result and not (is_negative and rounded_val == 0)
4141

@@ -45,7 +45,7 @@ def perfect_cube_binary_search(n: int) -> bool:
4545
Check if a number is a perfect cube or not using binary search.
4646
Time complexity : O(Log(n))
4747
Space complexity: O(1)
48-
48+
4949
>>> perfect_cube_binary_search(27)
5050
True
5151
>>> perfect_cube_binary_search(64)
@@ -91,29 +91,29 @@ def perfect_cube_binary_search(n: int) -> bool:
9191
"""
9292
if not isinstance(n, int):
9393
raise TypeError("perfect_cube_binary_search() only accepts integers")
94-
94+
9595
# Handle zero and negative numbers
9696
if n == 0:
9797
return True
9898
if n < 0:
9999
n = -n
100-
100+
101101
# Quick checks to eliminate obvious non-cubes
102102
# Check last three digits using modulo arithmetic
103103
# Only 0, 1, 8, 7, 4, 5, 6, 3, 2, 9 can be cubes mod 10
104104
# But for cubes, the pattern is more complex
105105
last_digit = n % 10
106106
if last_digit not in {0, 1, 8, 7, 4, 5, 6, 3, 2, 9}:
107107
return False
108-
108+
109109
# More refined check: cubes mod 7 can only be 0, 1, 6
110110
if n % 7 not in {0, 1, 6}:
111111
return False
112-
112+
113113
# More refined check: cubes mod 9 can only be 0, 1, 8
114114
if n % 9 not in {0, 1, 8}:
115115
return False
116-
116+
117117
# Estimate the cube root using logarithms for very large numbers
118118
# This gives us a much better initial right bound
119119
if n > 10**18:
@@ -126,7 +126,7 @@ def perfect_cube_binary_search(n: int) -> bool:
126126
else:
127127
# For smaller numbers, use the standard approach
128128
left, right = 0, n // 2 + 1
129-
129+
130130
# Binary search
131131
while left <= right:
132132
mid = (left + right) // 2
@@ -135,18 +135,19 @@ def perfect_cube_binary_search(n: int) -> bool:
135135
if mid > 10**6 and mid * mid > n // mid:
136136
right = mid - 1
137137
continue
138-
138+
139139
cube = mid * mid * mid
140140
if cube == n:
141141
return True
142142
elif cube < n:
143143
left = mid + 1
144144
else:
145145
right = mid - 1
146-
146+
147147
return False
148148

149149

150150
if __name__ == "__main__":
151151
import doctest
152+
152153
doctest.testmod()

0 commit comments

Comments
 (0)