|
| 1 | +import asyncio |
| 2 | +import logging |
| 3 | +import os |
| 4 | +import signal |
| 5 | +import time |
| 6 | +from collections import deque |
| 7 | +from dataclasses import dataclass |
| 8 | +from typing import AsyncIterable, Optional, Union |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +from livekit import rtc, api |
| 12 | + |
| 13 | +try: |
| 14 | + import cv2 |
| 15 | +except ImportError: |
| 16 | + raise RuntimeError( |
| 17 | + "cv2 is required to run this example, " |
| 18 | + "install with `pip install opencv-python`" |
| 19 | + ) |
| 20 | + |
| 21 | +# ensure LIVEKIT_URL, LIVEKIT_API_KEY, and LIVEKIT_API_SECRET are set |
| 22 | + |
| 23 | +logger = logging.getLogger(__name__) |
| 24 | + |
| 25 | + |
| 26 | +@dataclass |
| 27 | +class MediaInfo: |
| 28 | + video_width: int |
| 29 | + video_height: int |
| 30 | + video_fps: float |
| 31 | + audio_sample_rate: int |
| 32 | + audio_channels: int |
| 33 | + |
| 34 | + |
| 35 | +class _AudioEndSentinel: |
| 36 | + pass |
| 37 | + |
| 38 | + |
| 39 | +async def audio_generator( |
| 40 | + media_info: MediaInfo, |
| 41 | + output_audio: asyncio.Queue[Union[rtc.AudioFrame, _AudioEndSentinel]], |
| 42 | +): |
| 43 | + """Generates audio frames with alternating sine wave and silence periods""" |
| 44 | + frequency = 480 # Hz |
| 45 | + amplitude = 0.5 |
| 46 | + period = 7.0 |
| 47 | + sine_duration = 5.0 # Duration of sine wave in each period |
| 48 | + chunk_size = 1024 |
| 49 | + |
| 50 | + while True: |
| 51 | + current_time = 0.0 |
| 52 | + |
| 53 | + # Generate audio for sine_duration seconds |
| 54 | + while current_time < sine_duration: |
| 55 | + t = np.linspace( |
| 56 | + current_time, |
| 57 | + current_time + chunk_size / media_info.audio_sample_rate, |
| 58 | + num=chunk_size, |
| 59 | + endpoint=False, |
| 60 | + ) |
| 61 | + # Create volume envelope using sine wave |
| 62 | + volume = np.abs(np.sin(2 * np.pi * current_time / sine_duration)) |
| 63 | + samples = amplitude * volume * np.sin(2 * np.pi * frequency * t) |
| 64 | + |
| 65 | + # Convert to int16, (samples, channels) |
| 66 | + samples = (samples[:, np.newaxis] * 32767).astype(np.int16) |
| 67 | + if media_info.audio_channels > 1: |
| 68 | + samples = np.repeat(samples, media_info.audio_channels, axis=1) |
| 69 | + |
| 70 | + # Create audio frame |
| 71 | + audio_frame = rtc.AudioFrame( |
| 72 | + data=samples.tobytes(), |
| 73 | + sample_rate=media_info.audio_sample_rate, |
| 74 | + num_channels=samples.shape[1], |
| 75 | + samples_per_channel=samples.shape[0], |
| 76 | + ) |
| 77 | + await output_audio.put(audio_frame) |
| 78 | + current_time += chunk_size / media_info.audio_sample_rate |
| 79 | + await asyncio.sleep(0) |
| 80 | + await output_audio.put(_AudioEndSentinel()) |
| 81 | + |
| 82 | + # Simulate silence |
| 83 | + silence_duration = period - sine_duration |
| 84 | + await asyncio.sleep(silence_duration) |
| 85 | + |
| 86 | + |
| 87 | +class WaveformVisualizer: |
| 88 | + def __init__(self, history_length: int = 1000): |
| 89 | + self.history_length = history_length |
| 90 | + self.volume_history: deque[float] = deque(maxlen=history_length) |
| 91 | + self.start_time = time.time() |
| 92 | + |
| 93 | + def draw_timestamp(self, canvas: np.ndarray, fps: float): |
| 94 | + height, width = canvas.shape[:2] |
| 95 | + text = f"{time.time() - self.start_time:.1f}s @ {fps:.1f}fps" |
| 96 | + font_face = cv2.FONT_HERSHEY_SIMPLEX |
| 97 | + font_scale = 2.0 |
| 98 | + thickness = 2 |
| 99 | + |
| 100 | + (text_width, text_height), baseline = cv2.getTextSize( |
| 101 | + text, font_face, font_scale, thickness |
| 102 | + ) |
| 103 | + x = (width - text_width) // 2 |
| 104 | + y = int((height - text_height) * 0.4 + baseline) |
| 105 | + cv2.putText(canvas, text, (x, y), font_face, font_scale, (0, 0, 0), thickness) |
| 106 | + |
| 107 | + def draw_current_wave( |
| 108 | + self, canvas: np.ndarray, audio_samples: np.ndarray |
| 109 | + ) -> np.ndarray: |
| 110 | + """Draw the current waveform and return the current values""" |
| 111 | + height, width = canvas.shape[:2] |
| 112 | + center_y = height // 2 + 100 |
| 113 | + |
| 114 | + normalized_samples = audio_samples.astype(np.float32) / 32767.0 |
| 115 | + normalized_samples = normalized_samples.mean(axis=1) # (samples,) |
| 116 | + num_points = min(width, len(normalized_samples)) |
| 117 | + |
| 118 | + if len(normalized_samples) > num_points: |
| 119 | + indices = np.linspace(0, len(normalized_samples) - 1, num_points, dtype=int) |
| 120 | + plot_data = normalized_samples[indices] |
| 121 | + else: |
| 122 | + plot_data = normalized_samples |
| 123 | + |
| 124 | + x_coords = np.linspace(0, width, num_points, dtype=int) |
| 125 | + y_coords = (plot_data * 200) + center_y |
| 126 | + |
| 127 | + cv2.line(canvas, (0, center_y), (width, center_y), (200, 200, 200), 1) |
| 128 | + points = np.column_stack((x_coords, y_coords.astype(int))) |
| 129 | + for i in range(len(points) - 1): |
| 130 | + cv2.line(canvas, tuple(points[i]), tuple(points[i + 1]), (0, 255, 0), 2) |
| 131 | + |
| 132 | + return plot_data |
| 133 | + |
| 134 | + def draw_volume_history(self, canvas: np.ndarray, current_volume: float): |
| 135 | + height, width = canvas.shape[:2] |
| 136 | + center_y = height // 2 |
| 137 | + |
| 138 | + self.volume_history.append(current_volume) |
| 139 | + cv2.line( |
| 140 | + canvas, (0, center_y - 250), (width, center_y - 250), (200, 200, 200), 1 |
| 141 | + ) |
| 142 | + |
| 143 | + volume_x = np.linspace(0, width, len(self.volume_history), dtype=int) |
| 144 | + volume_y = center_y - 250 + (np.array(self.volume_history) * 200) |
| 145 | + points = np.column_stack((volume_x, volume_y.astype(int))) |
| 146 | + for i in range(len(points) - 1): |
| 147 | + cv2.line(canvas, tuple(points[i]), tuple(points[i + 1]), (255, 0, 0), 2) |
| 148 | + |
| 149 | + def draw(self, canvas: np.ndarray, audio_samples: np.ndarray, fps: float): |
| 150 | + self.draw_timestamp(canvas, fps) |
| 151 | + plot_data = self.draw_current_wave(canvas, audio_samples) |
| 152 | + current_volume = np.abs(plot_data).mean() |
| 153 | + self.draw_volume_history(canvas, current_volume) |
| 154 | + |
| 155 | + |
| 156 | +async def video_generator( |
| 157 | + media_info: MediaInfo, |
| 158 | + input_audio: asyncio.Queue[Union[rtc.AudioFrame, _AudioEndSentinel]], |
| 159 | + av_sync: rtc.AVSynchronizer, # only used for drawing the actual fps on the video |
| 160 | +) -> AsyncIterable[tuple[rtc.VideoFrame, Optional[rtc.AudioFrame]]]: |
| 161 | + canvas = np.zeros( |
| 162 | + (media_info.video_height, media_info.video_width, 4), dtype=np.uint8 |
| 163 | + ) |
| 164 | + canvas.fill(255) |
| 165 | + |
| 166 | + def _np_to_video_frame(image: np.ndarray) -> rtc.VideoFrame: |
| 167 | + return rtc.VideoFrame( |
| 168 | + width=image.shape[1], |
| 169 | + height=image.shape[0], |
| 170 | + type=rtc.VideoBufferType.RGBA, |
| 171 | + data=image.tobytes(), |
| 172 | + ) |
| 173 | + |
| 174 | + audio_samples_per_frame = int(media_info.audio_sample_rate / media_info.video_fps) |
| 175 | + audio_buffer = np.zeros((0, media_info.audio_channels), dtype=np.int16) |
| 176 | + wave_visualizer = WaveformVisualizer() |
| 177 | + while True: |
| 178 | + try: |
| 179 | + # timeout has to be shorter than the frame interval to avoid starvation |
| 180 | + audio_frame = await asyncio.wait_for( |
| 181 | + input_audio.get(), timeout=0.5 / media_info.video_fps |
| 182 | + ) |
| 183 | + except asyncio.TimeoutError: |
| 184 | + # generate frame without audio (e.g. silence state) |
| 185 | + new_frame = canvas.copy() |
| 186 | + wave_visualizer.draw(new_frame, np.zeros((1, 2)), av_sync.actual_fps) |
| 187 | + video_frame = _np_to_video_frame(new_frame) |
| 188 | + yield video_frame, None |
| 189 | + |
| 190 | + # speed is controlled by the video fps in av_sync |
| 191 | + await asyncio.sleep(0) |
| 192 | + continue |
| 193 | + |
| 194 | + if isinstance(audio_frame, _AudioEndSentinel): |
| 195 | + # drop the audio buffer when the audio finished |
| 196 | + audio_buffer = np.zeros((0, media_info.audio_channels), dtype=np.int16) |
| 197 | + continue |
| 198 | + |
| 199 | + audio_samples = np.frombuffer(audio_frame.data, dtype=np.int16).reshape( |
| 200 | + -1, audio_frame.num_channels |
| 201 | + ) # (samples, channels) |
| 202 | + # accumulate audio samples to the buffer |
| 203 | + audio_buffer = np.concatenate([audio_buffer, audio_samples], axis=0) |
| 204 | + |
| 205 | + while audio_buffer.shape[0] >= audio_samples_per_frame: |
| 206 | + sub_samples = audio_buffer[:audio_samples_per_frame, :] |
| 207 | + audio_buffer = audio_buffer[audio_samples_per_frame:, :] |
| 208 | + |
| 209 | + new_frame = canvas.copy() |
| 210 | + wave_visualizer.draw(new_frame, sub_samples, av_sync.actual_fps) |
| 211 | + video_frame = _np_to_video_frame(new_frame) |
| 212 | + sub_audio_frame = rtc.AudioFrame( |
| 213 | + data=sub_samples.tobytes(), |
| 214 | + sample_rate=audio_frame.sample_rate, |
| 215 | + num_channels=sub_samples.shape[1], |
| 216 | + samples_per_channel=sub_samples.shape[0], |
| 217 | + ) |
| 218 | + yield video_frame, sub_audio_frame |
| 219 | + |
| 220 | + |
| 221 | +async def main(room: rtc.Room): |
| 222 | + token = ( |
| 223 | + api.AccessToken() |
| 224 | + .with_identity("python-publisher") |
| 225 | + .with_name("Python Publisher") |
| 226 | + .with_grants( |
| 227 | + api.VideoGrants( |
| 228 | + room_join=True, |
| 229 | + room="room-ysBA-Q0hM", |
| 230 | + agent=True, |
| 231 | + ) |
| 232 | + ) |
| 233 | + .to_jwt() |
| 234 | + ) |
| 235 | + url = os.getenv("LIVEKIT_URL") |
| 236 | + logging.info("connecting to %s", url) |
| 237 | + |
| 238 | + try: |
| 239 | + await room.connect(url, token) |
| 240 | + logging.info("connected to room %s", room.name) |
| 241 | + except rtc.ConnectError as e: |
| 242 | + logging.error("failed to connect to the room: %s", e) |
| 243 | + return |
| 244 | + |
| 245 | + # Create media info |
| 246 | + media_info = MediaInfo( |
| 247 | + video_width=1280, |
| 248 | + video_height=720, |
| 249 | + video_fps=30.0, |
| 250 | + audio_sample_rate=48000, |
| 251 | + audio_channels=2, |
| 252 | + ) |
| 253 | + |
| 254 | + # Create video and audio sources/tracks |
| 255 | + queue_size_ms = 50 |
| 256 | + video_source = rtc.VideoSource( |
| 257 | + width=media_info.video_width, |
| 258 | + height=media_info.video_height, |
| 259 | + ) |
| 260 | + audio_source = rtc.AudioSource( |
| 261 | + sample_rate=media_info.audio_sample_rate, |
| 262 | + num_channels=media_info.audio_channels, |
| 263 | + queue_size_ms=queue_size_ms, |
| 264 | + ) |
| 265 | + |
| 266 | + video_track = rtc.LocalVideoTrack.create_video_track("video", video_source) |
| 267 | + audio_track = rtc.LocalAudioTrack.create_audio_track("audio", audio_source) |
| 268 | + |
| 269 | + # Publish tracks |
| 270 | + video_options = rtc.TrackPublishOptions(source=rtc.TrackSource.SOURCE_CAMERA) |
| 271 | + audio_options = rtc.TrackPublishOptions(source=rtc.TrackSource.SOURCE_MICROPHONE) |
| 272 | + |
| 273 | + await room.local_participant.publish_track(video_track, video_options) |
| 274 | + await room.local_participant.publish_track(audio_track, audio_options) |
| 275 | + |
| 276 | + # Create AV synchronizer |
| 277 | + av_sync = rtc.AVSynchronizer( |
| 278 | + audio_source=audio_source, |
| 279 | + video_source=video_source, |
| 280 | + video_fps=media_info.video_fps, |
| 281 | + video_queue_size_ms=queue_size_ms, |
| 282 | + ) |
| 283 | + |
| 284 | + # Start audio generator |
| 285 | + audio_queue = asyncio.Queue[Union[rtc.AudioFrame, _AudioEndSentinel]](maxsize=1) |
| 286 | + audio_task = asyncio.create_task(audio_generator(media_info, audio_queue)) |
| 287 | + |
| 288 | + try: |
| 289 | + async for video_frame, audio_frame in video_generator( |
| 290 | + media_info, audio_queue, av_sync=av_sync |
| 291 | + ): |
| 292 | + await av_sync.push(video_frame) |
| 293 | + if audio_frame: |
| 294 | + await av_sync.push(audio_frame) |
| 295 | + finally: |
| 296 | + audio_task.cancel() |
| 297 | + await av_sync.aclose() |
| 298 | + |
| 299 | + |
| 300 | +if __name__ == "__main__": |
| 301 | + logging.basicConfig( |
| 302 | + level=logging.INFO, |
| 303 | + handlers=[logging.FileHandler("audio_wave.log"), logging.StreamHandler()], |
| 304 | + ) |
| 305 | + |
| 306 | + loop = asyncio.get_event_loop() |
| 307 | + room = rtc.Room(loop=loop) |
| 308 | + |
| 309 | + async def cleanup(): |
| 310 | + await room.disconnect() |
| 311 | + loop.stop() |
| 312 | + |
| 313 | + asyncio.ensure_future(main(room)) |
| 314 | + for signal in [signal.SIGINT, signal.SIGTERM]: |
| 315 | + loop.add_signal_handler(signal, lambda: asyncio.ensure_future(cleanup())) |
| 316 | + |
| 317 | + try: |
| 318 | + loop.run_forever() |
| 319 | + finally: |
| 320 | + loop.close() |
0 commit comments