|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.nn.functional as F |
| 4 | +from ...model_utils.basic_block_2d import BasicBlock2D |
| 5 | + |
| 6 | + |
| 7 | +class GeneralizedLSSFPN(nn.Module): |
| 8 | + """ |
| 9 | + This module implements FPN, which creates pyramid features built on top of some input feature maps. |
| 10 | + This code is adapted from https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/necks/fpn.py with minimal modifications. |
| 11 | + """ |
| 12 | + def __init__(self, model_cfg): |
| 13 | + super().__init__() |
| 14 | + self.model_cfg = model_cfg |
| 15 | + in_channels = self.model_cfg.IN_CHANNELS |
| 16 | + out_channels = self.model_cfg.OUT_CHANNELS |
| 17 | + num_ins = len(in_channels) |
| 18 | + num_outs = self.model_cfg.NUM_OUTS |
| 19 | + start_level = self.model_cfg.START_LEVEL |
| 20 | + end_level = self.model_cfg.END_LEVEL |
| 21 | + |
| 22 | + self.in_channels = in_channels |
| 23 | + |
| 24 | + if end_level == -1: |
| 25 | + self.backbone_end_level = num_ins - 1 |
| 26 | + else: |
| 27 | + self.backbone_end_level = end_level |
| 28 | + assert end_level <= len(in_channels) |
| 29 | + assert num_outs == end_level - start_level |
| 30 | + self.start_level = start_level |
| 31 | + self.end_level = end_level |
| 32 | + |
| 33 | + self.lateral_convs = nn.ModuleList() |
| 34 | + self.fpn_convs = nn.ModuleList() |
| 35 | + |
| 36 | + for i in range(self.start_level, self.backbone_end_level): |
| 37 | + l_conv = BasicBlock2D( |
| 38 | + in_channels[i] + (in_channels[i + 1] if i == self.backbone_end_level - 1 else out_channels), |
| 39 | + out_channels, kernel_size=1, bias = False |
| 40 | + ) |
| 41 | + fpn_conv = BasicBlock2D(out_channels,out_channels, kernel_size=3, padding=1, bias = False) |
| 42 | + self.lateral_convs.append(l_conv) |
| 43 | + self.fpn_convs.append(fpn_conv) |
| 44 | + |
| 45 | + def forward(self, batch_dict): |
| 46 | + """ |
| 47 | + Args: |
| 48 | + batch_dict: |
| 49 | + image_features (list[tensor]): Multi-stage features from image backbone. |
| 50 | + Returns: |
| 51 | + batch_dict: |
| 52 | + image_fpn (list(tensor)): FPN features. |
| 53 | + """ |
| 54 | + # upsample -> cat -> conv1x1 -> conv3x3 |
| 55 | + inputs = batch_dict['image_features'] |
| 56 | + assert len(inputs) == len(self.in_channels) |
| 57 | + |
| 58 | + # build laterals |
| 59 | + laterals = [inputs[i + self.start_level] for i in range(len(inputs))] |
| 60 | + |
| 61 | + # build top-down path |
| 62 | + used_backbone_levels = len(laterals) - 1 |
| 63 | + for i in range(used_backbone_levels - 1, -1, -1): |
| 64 | + x = F.interpolate( |
| 65 | + laterals[i + 1], |
| 66 | + size=laterals[i].shape[2:], |
| 67 | + mode='bilinear', align_corners=False, |
| 68 | + ) |
| 69 | + laterals[i] = torch.cat([laterals[i], x], dim=1) |
| 70 | + laterals[i] = self.lateral_convs[i](laterals[i]) |
| 71 | + laterals[i] = self.fpn_convs[i](laterals[i]) |
| 72 | + |
| 73 | + # build outputs |
| 74 | + outs = [laterals[i] for i in range(used_backbone_levels)] |
| 75 | + batch_dict['image_fpn'] = tuple(outs) |
| 76 | + return batch_dict |
0 commit comments