|
| 1 | +import os |
| 2 | +import paddle |
| 3 | +from paddleslim.analysis import TableLatencyPredictor |
| 4 | +from .prune_model import get_sparse_model, get_prune_model |
| 5 | +from .fake_ptq import post_quant_fake |
| 6 | +import shutil |
| 7 | + |
| 8 | + |
| 9 | +def predict_compressed_model(model_file, param_file, hardware='SD710'): |
| 10 | + """ |
| 11 | + Evaluating the latency of the model under various compression strategies. |
| 12 | + Args: |
| 13 | + model_file(str), param_file(str): The inference model to be compressed. |
| 14 | + hardware(str): Target device. |
| 15 | + Returns: |
| 16 | + latency_dict(dict): The latency latency of the model under various compression strategies. |
| 17 | + """ |
| 18 | + latency_dict = {} |
| 19 | + |
| 20 | + model_filename = model_file.split('/')[-1] |
| 21 | + param_filename = param_file.split('/')[-1] |
| 22 | + |
| 23 | + predictor = TableLatencyPredictor(hardware) |
| 24 | + latency = predictor.predict( |
| 25 | + model_file=model_file, param_file=param_file, data_type='fp32') |
| 26 | + latency_dict.update({'origin_fp32': latency}) |
| 27 | + paddle.enable_static() |
| 28 | + place = paddle.CPUPlace() |
| 29 | + exe = paddle.static.Executor(place) |
| 30 | + post_quant_fake( |
| 31 | + exe, |
| 32 | + model_dir=os.path.dirname(model_file), |
| 33 | + model_filename=model_filename, |
| 34 | + params_filename=param_filename, |
| 35 | + save_model_path='quant_model', |
| 36 | + quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], |
| 37 | + is_full_quantize=False, |
| 38 | + activation_bits=8, |
| 39 | + weight_bits=8) |
| 40 | + quant_model_file = os.path.join('quant_model', model_filename) |
| 41 | + quant_param_file = os.path.join('quant_model', param_filename) |
| 42 | + |
| 43 | + latency = predictor.predict( |
| 44 | + model_file=quant_model_file, |
| 45 | + param_file=quant_param_file, |
| 46 | + data_type='int8') |
| 47 | + latency_dict.update({f'origin_int8': latency}) |
| 48 | + |
| 49 | + for prune_ratio in [0.3, 0.4, 0.5, 0.6]: |
| 50 | + get_prune_model( |
| 51 | + model_file=model_file, |
| 52 | + param_file=param_file, |
| 53 | + ratio=prune_ratio, |
| 54 | + save_path='prune_model') |
| 55 | + prune_model_file = os.path.join('prune_model', model_filename) |
| 56 | + prune_param_file = os.path.join('prune_model', param_filename) |
| 57 | + |
| 58 | + latency = predictor.predict( |
| 59 | + model_file=prune_model_file, |
| 60 | + param_file=prune_param_file, |
| 61 | + data_type='fp32') |
| 62 | + latency_dict.update({f'prune_{prune_ratio}_fp32': latency}) |
| 63 | + |
| 64 | + post_quant_fake( |
| 65 | + exe, |
| 66 | + model_dir='prune_model', |
| 67 | + model_filename=model_filename, |
| 68 | + params_filename=param_filename, |
| 69 | + save_model_path='quant_model', |
| 70 | + quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], |
| 71 | + is_full_quantize=False, |
| 72 | + activation_bits=8, |
| 73 | + weight_bits=8) |
| 74 | + quant_model_file = os.path.join('quant_model', model_filename) |
| 75 | + quant_param_file = os.path.join('quant_model', param_filename) |
| 76 | + |
| 77 | + latency = predictor.predict( |
| 78 | + model_file=quant_model_file, |
| 79 | + param_file=quant_param_file, |
| 80 | + data_type='int8') |
| 81 | + latency_dict.update({f'prune_{prune_ratio}_int8': latency}) |
| 82 | + |
| 83 | + for sparse_ratio in [0.70, 0.75, 0.80, 0.85, 0.90, 0.95]: |
| 84 | + get_sparse_model( |
| 85 | + model_file=model_file, |
| 86 | + param_file=param_file, |
| 87 | + ratio=sparse_ratio, |
| 88 | + save_path='sparse_model') |
| 89 | + sparse_model_file = os.path.join('sparse_model', model_filename) |
| 90 | + sparse_param_file = os.path.join('sparse_model', param_filename) |
| 91 | + |
| 92 | + latency = predictor.predict( |
| 93 | + model_file=sparse_model_file, |
| 94 | + param_file=sparse_param_file, |
| 95 | + data_type='fp32') |
| 96 | + latency_dict.update({f'sparse_{sparse_ratio}_fp32': latency}) |
| 97 | + |
| 98 | + post_quant_fake( |
| 99 | + exe, |
| 100 | + model_dir='sparse_model', |
| 101 | + model_filename=model_filename, |
| 102 | + params_filename=param_filename, |
| 103 | + save_model_path='quant_model', |
| 104 | + quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], |
| 105 | + is_full_quantize=False, |
| 106 | + activation_bits=8, |
| 107 | + weight_bits=8) |
| 108 | + quant_model_file = os.path.join('quant_model', model_filename) |
| 109 | + quant_param_file = os.path.join('quant_model', param_filename) |
| 110 | + |
| 111 | + latency = predictor.predict( |
| 112 | + model_file=quant_model_file, |
| 113 | + param_file=quant_param_file, |
| 114 | + data_type='int8') |
| 115 | + latency_dict.update({f'sparse_{prune_ratio}_int8': latency}) |
| 116 | + |
| 117 | + # Delete temporary model files |
| 118 | + shutil.rmtree('./quant_model') |
| 119 | + shutil.rmtree('./prune_model') |
| 120 | + shutil.rmtree('./sparse_model') |
| 121 | + return latency_dict |
0 commit comments