|
| 1 | +# License: MIT |
| 2 | +# Copyright © 2023 Frequenz Energy-as-a-Service GmbH |
| 3 | + |
| 4 | +"""Tests for the timeseries averager.""" |
| 5 | + |
| 6 | +from datetime import datetime, timedelta, timezone |
| 7 | +from typing import List |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +from frequenz.channels import Broadcast |
| 11 | + |
| 12 | +from frequenz.sdk.timeseries import ( |
| 13 | + UNIX_EPOCH, |
| 14 | + MovingWindow, |
| 15 | + PeriodicFeatureExtractor, |
| 16 | + Sample, |
| 17 | +) |
| 18 | +from tests.timeseries.test_moving_window import ( |
| 19 | + init_moving_window, |
| 20 | + push_logical_meter_data, |
| 21 | +) |
| 22 | + |
| 23 | + |
| 24 | +async def init_feature_extractor( |
| 25 | + data: List[float], period: timedelta |
| 26 | +) -> PeriodicFeatureExtractor: |
| 27 | + """ |
| 28 | + Initialize a PeriodicFeatureExtractor with a `MovingWindow` that contains the data. |
| 29 | +
|
| 30 | + Args: |
| 31 | + data: The data that is pushed into the moving window. |
| 32 | + period: The distance between two successive windows. |
| 33 | +
|
| 34 | + Returns: |
| 35 | + PeriodicFeatureExtractor |
| 36 | + """ |
| 37 | + window, sender = init_moving_window(timedelta(seconds=len(data))) |
| 38 | + await push_logical_meter_data(sender, data) |
| 39 | + |
| 40 | + return PeriodicFeatureExtractor(moving_window=window, period=period) |
| 41 | + |
| 42 | + |
| 43 | +async def init_feature_extractor_no_data(period: int) -> PeriodicFeatureExtractor: |
| 44 | + """ |
| 45 | + Initialize a PeriodicFeatureExtractor with a `MovingWindow` that contains no data. |
| 46 | +
|
| 47 | + Args: |
| 48 | + period: The distance between two successive windows. |
| 49 | +
|
| 50 | + Returns: |
| 51 | + PeriodicFeatureExtractor |
| 52 | + """ |
| 53 | + # We only need the moving window to initialize the PeriodicFeatureExtractor class. |
| 54 | + lm_chan = Broadcast[Sample]("lm_net_power") |
| 55 | + moving_window = MovingWindow( |
| 56 | + timedelta(seconds=1), lm_chan.new_receiver(), timedelta(seconds=1) |
| 57 | + ) |
| 58 | + |
| 59 | + await lm_chan.new_sender().send(Sample(datetime.now(tz=timezone.utc), 0)) |
| 60 | + |
| 61 | + # Initialize the PeriodicFeatureExtractor class with a period of period seconds. |
| 62 | + # This works since the sampling period is set to 1 second. |
| 63 | + return PeriodicFeatureExtractor(moving_window, timedelta(seconds=period)) |
| 64 | + |
| 65 | + |
| 66 | +async def test_interval_shifting() -> None: |
| 67 | + """ |
| 68 | + Test if a interval is properly shifted into a moving window |
| 69 | + """ |
| 70 | + feature_extractor = await init_feature_extractor( |
| 71 | + [1, 2, 2, 1, 1, 1, 2, 2, 1, 1], timedelta(seconds=5) |
| 72 | + ) |
| 73 | + |
| 74 | + # Test if the timestamp is not shifted |
| 75 | + timestamp = datetime(2023, 1, 1, 0, 0, 1, tzinfo=timezone.utc) |
| 76 | + index_not_shifted = ( |
| 77 | + feature_extractor._timestamp_to_rel_index( # pylint: disable=protected-access |
| 78 | + timestamp |
| 79 | + ) |
| 80 | + % feature_extractor._period # pylint: disable=protected-access |
| 81 | + ) |
| 82 | + assert index_not_shifted == 1 |
| 83 | + |
| 84 | + # Test if a timestamp in the window is shifted to the first appearance of the window |
| 85 | + timestamp = datetime(2023, 1, 1, 0, 0, 6, tzinfo=timezone.utc) |
| 86 | + index_shifted = ( |
| 87 | + feature_extractor._timestamp_to_rel_index( # pylint: disable=protected-access |
| 88 | + timestamp |
| 89 | + ) |
| 90 | + % feature_extractor._period # pylint: disable=protected-access |
| 91 | + ) |
| 92 | + assert index_shifted == 1 |
| 93 | + |
| 94 | + # Test if a timestamp outside the window is shifted |
| 95 | + timestamp = datetime(2023, 1, 1, 0, 0, 11, tzinfo=timezone.utc) |
| 96 | + index_shifted = ( |
| 97 | + feature_extractor._timestamp_to_rel_index( # pylint: disable=protected-access |
| 98 | + timestamp |
| 99 | + ) |
| 100 | + % feature_extractor._period # pylint: disable=protected-access |
| 101 | + ) |
| 102 | + assert index_shifted == 1 |
| 103 | + |
| 104 | + |
| 105 | +async def test_feature_extractor() -> None: |
| 106 | + """Test the feature extractor with a moving window that contains data.""" |
| 107 | + start = UNIX_EPOCH + timedelta(seconds=1) |
| 108 | + end = start + timedelta(seconds=2) |
| 109 | + |
| 110 | + data: List[float] = [1, 2, 2.5, 1, 1, 1, 2, 2, 1, 1, 2, 2] |
| 111 | + |
| 112 | + feature_extractor = await init_feature_extractor(data, timedelta(seconds=3)) |
| 113 | + assert np.allclose(feature_extractor.avg(start, end), [5 / 3, 4 / 3]) |
| 114 | + |
| 115 | + feature_extractor = await init_feature_extractor(data, timedelta(seconds=4)) |
| 116 | + assert np.allclose(feature_extractor.avg(start, end), [1, 2]) |
| 117 | + |
| 118 | + data: List[float] = [1, 2, 2.5, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1] # type: ignore[no-redef] |
| 119 | + |
| 120 | + feature_extractor = await init_feature_extractor(data, timedelta(seconds=5)) |
| 121 | + assert np.allclose(feature_extractor.avg(start, end), [1.5, 1.5]) |
| 122 | + |
| 123 | + |
| 124 | +async def test_profiler_calculate_np() -> None: |
| 125 | + """ |
| 126 | + Test the calculation of the average using a numpy array and compare it |
| 127 | + against the pure python method with the same functionality. |
| 128 | + """ |
| 129 | + data = np.array([2, 2.5, 1, 1, 1, 2]) |
| 130 | + feature_extractor = await init_feature_extractor_no_data(4) |
| 131 | + window_size = 2 |
| 132 | + reshaped = feature_extractor._reshape_np_array( # pylint: disable=protected-access |
| 133 | + data, window_size |
| 134 | + ) |
| 135 | + result = np.average(reshaped[:, :window_size], axis=0) |
| 136 | + assert np.allclose(result, np.array([1.5, 2.25])) |
| 137 | + |
| 138 | + data = np.array([2, 2, 1, 1, 2]) |
| 139 | + feature_extractor = await init_feature_extractor_no_data(5) |
| 140 | + reshaped = feature_extractor._reshape_np_array( # pylint: disable=protected-access |
| 141 | + data, window_size |
| 142 | + ) |
| 143 | + result = np.average(reshaped[:, :window_size], axis=0) |
| 144 | + assert np.allclose(result, np.array([2, 2])) |
0 commit comments