@@ -218,23 +218,6 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
218218 static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; }
219219
220220 mlir::Value getViewSource() { return getSource(); }
221-
222- unsigned getSourceMemorySpace() {
223- auto srcTy = getSourceType();
224- if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
225- auto attr = memrefTy.getMemorySpace();
226- if (attr) {
227- if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr)) {
228- return static_cast<unsigned>(intAttr.getInt());
229- }
230- if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
231- return static_cast<unsigned>(memSpaceAttr.getValue());
232- }
233- }
234- // take global as default memory scope.
235- return static_cast<unsigned>(MemorySpace::Global);
236- }
237-
238221 }];
239222}
240223
@@ -428,10 +411,8 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
428411 is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
429412 implying each element in the array corresponds to a work-item (SIMT lane)
430413 in the subgroup.
431-
432- The first dimension of the result TensorDesc corresponds to work-items, so it should
433- match the dimension of offsets. It may also has a second dimension corresponding to
434- the chunk_size if the chunk size is larger than 1.
414+ * chunk_size: [optional attribute] indicates number of continious
415+ elements accessed for each offset, default is 1.
435416
436417 Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
437418 ```mlir
@@ -443,22 +424,29 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
443424 It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
444425 ```mlir
445426 %0 = memref.alloc() : memref<1024xf32>
446- %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8 >
427+ %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8} : memref<1024xf32> -> TensorDesc<4x8xf32>
447428 ```
448429
449430 Example 3. It is similar to Example 2, but there is some overlaps among workitems.
450431 It accesses: a[0:7], a[4:11], a[8:15], a[12:19]
451432 ```mlir
452433 %0 = memref.alloc() : memref<1024xf32>
453- %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8> >
434+ %1 = xegpu.create_tdesc %0[0, 4, 8, 12] {chunk_size = 8} : memref<1024xf32> -> TensorDesc<4x8xf32>
454435 ```
455436 }];
456437
457438 let arguments = (ins XeGPU_BaseAddrType: $source,
458439 Variadic<Index>: $offsets,
459- DenseI64ArrayAttr: $const_offsets);
440+ DenseI64ArrayAttr: $const_offsets,
441+ DefaultValuedAttr<I64Attr, "1">: $chunk_size);
460442 let results = (outs XeGPU_TensorDesc:$TensorDesc);
461443
444+ let builders = [
445+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source,
446+ "llvm::ArrayRef<OpFoldResult>": $offsets,
447+ CArg<"uint32_t", "1"> : $chunk_size)>,
448+ ];
449+
462450 let assemblyFormat = [{
463451 $source
464452 custom<DynamicIndexList>($offsets, $const_offsets)
@@ -485,22 +473,6 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
485473 assert(idx < getNumOffsets() && "Invalid out of bound access.");
486474 return getMixedOffsets()[idx];
487475 }
488-
489- unsigned getSourceMemorySpace() {
490- auto srcTy = getSource().getType();
491- if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
492- auto attr = memrefTy.getMemorySpace();
493- if (attr) {
494- if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr))
495- return static_cast<unsigned>(intAttr.getInt());
496- if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
497- return static_cast<unsigned>(memSpaceAttr.getValue());
498- }
499- }
500- // take global as default memory scope.
501- return static_cast<unsigned>(MemorySpace::Global);
502- }
503-
504476 }];
505477
506478 let hasVerifier = 1;
@@ -548,31 +520,28 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
548520
549521 let description = [{ It (aka. load) load data per each work-item. The output
550522 describes the data being loaded at the subgroup level, so its size is
551- consistent with the number of work-items in a subgroup. When the chunk size
552- is larger than 2, the output vector is a 2D vector, with dim-1 correspoding
553- to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item.
554- Specially, there is a transpose effect on the result (as compared to the TensorDesc)
555- due to the hardware implementation. Therefore, a transpose attribute is introduced
556- on purpose, making sure users are aware of this implicit transformation.
523+ consistent with the number of work-items in a subgroup. When `chunk_size_per_lane`
524+ attribute is larger than 1 in TensorDesc, the output vector will be 2D vector,
525+ with dim-1 correspoding to the chunk size.
557526
558527 The mask operand masks out memory access so that it is safe to pass out-of-boundary
559528 addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
560529
561530 Example:
562531 ```mlir
563- %2 = xegpu.load %1, %0 {transpose,
532+ %2 = xegpu.load %1, %0 {transpose = [1, 0] ,
564533 l1_hint = #xegpu.cache_hint<cached>,
565534 l2_hint = #xegpu.cache_hint<uncached>,
566535 l3_hint = #xegpu.cache_hint<uncached>}
567- : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global >>,
568- vector<16xi1> -> vector<16xf32>
536+ : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true >>, vector<16xi1>
537+ -> vector<16xf32>
569538 ```
570539
571540 }];
572541
573542 let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
574543 XeGPU_MaskType: $mask,
575- OptionalAttr<UnitAttr >: $transpose,
544+ OptionalAttr<DenseI64ArrayAttr >: $transpose,
576545 OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
577546 OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
578547 OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -604,15 +573,11 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
604573 let hasVerifier = 1;
605574}
606575
607- def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch <["value", "TensorDesc"]>,
608- AllElementTypesMatch<["value", "TensorDesc"]>]> {
576+ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch <["value", "TensorDesc"]>,
577+ AllElementTypesMatch<["value", "TensorDesc"]>]> {
609578 let summary = "store data to scattered memory locations.";
610- let description = [{ It (aka. store) stores data to scattered memory locations. The value is
611- typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be
612- a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes
613- and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter`
614- has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
615- introduced on purpose, making sure users are aware of this implicit transformation.
579+ let description = [{ It (aka. store) stores data to scattered memory locations.
580+ It has similar semantic to `load_gather`.
616581
617582 Example:
618583 ```mlir
@@ -627,7 +592,6 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "T
627592 XeGPU_ValueType: $value,
628593 XeGPU_TensorDesc: $TensorDesc,
629594 XeGPU_MaskType: $mask,
630- OptionalAttr<UnitAttr>: $transpose,
631595 OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
632596 OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
633597 OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -759,7 +723,7 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
759723
760724def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure,
761725 AllElementTypesMatch<["tensorDesc", "value", "result"]>,
762- AllShapesMatch<["tensorDesc", "value", "result"]>]> {
726+ AllShapesMatch<["tensorDesc", "mask", " value", "result"]>]> {
763727 let summary = "Atomic ready-modify-write operation on the TensorDesc. ";
764728
765729 let description = [{
@@ -844,7 +808,7 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
844808 2. `Fence_scope` describes the scope of fence. "Workgroup" means that the scope would be
845809 within each workgroup. "GPU" means the scope would be across workgroups within the GPU.
846810 }];
847- let arguments = (ins XeGPU_MemorySpaceAttr : $memory_kind,
811+ let arguments = (ins XeGPU_MemoryScopeAttr : $memory_kind,
848812 XeGPU_FenceScopeAttr: $fence_scope);
849813 let assemblyFormat = [{`memory_kind` `=` `` $memory_kind `,` `fence_scope` `=` `` $fence_scope attr-dict}];
850814 let extraClassDeclaration = extraBaseClassDeclaration;
0 commit comments