|
| 1 | +//===----------------------------------------------------------------------===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +// REQUIRES: std-at-least-c++26 |
| 10 | + |
| 11 | +// <functional> |
| 12 | + |
| 13 | +// template<auto f, class... Args> |
| 14 | +// constexpr unspecified bind_front(Args&&...); |
| 15 | + |
| 16 | +#include <functional> |
| 17 | + |
| 18 | +#include <cassert> |
| 19 | +#include <concepts> |
| 20 | +#include <tuple> |
| 21 | +#include <type_traits> |
| 22 | +#include <utility> |
| 23 | + |
| 24 | +#include "types.h" |
| 25 | + |
| 26 | +constexpr void test_basic_bindings() { |
| 27 | + { // Bind arguments, call without arguments |
| 28 | + { |
| 29 | + auto f = std::bind_front<MakeTuple{}>(); |
| 30 | + assert(f() == std::make_tuple()); |
| 31 | + } |
| 32 | + { |
| 33 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}); |
| 34 | + assert(f() == std::make_tuple(Elem<1>{})); |
| 35 | + } |
| 36 | + { |
| 37 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}); |
| 38 | + assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{})); |
| 39 | + } |
| 40 | + { |
| 41 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}, Elem<3>{}); |
| 42 | + assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + { // Bind no arguments, call with arguments |
| 47 | + { |
| 48 | + auto f = std::bind_front<MakeTuple{}>(); |
| 49 | + assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{})); |
| 50 | + } |
| 51 | + { |
| 52 | + auto f = std::bind_front<MakeTuple{}>(); |
| 53 | + assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{})); |
| 54 | + } |
| 55 | + { |
| 56 | + auto f = std::bind_front<MakeTuple{}>(); |
| 57 | + assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); |
| 58 | + } |
| 59 | + } |
| 60 | + |
| 61 | + { // Bind arguments, call with arguments |
| 62 | + { |
| 63 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}); |
| 64 | + assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<10>{})); |
| 65 | + } |
| 66 | + { |
| 67 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}); |
| 68 | + assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{})); |
| 69 | + } |
| 70 | + { |
| 71 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}, Elem<3>{}); |
| 72 | + assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{})); |
| 73 | + } |
| 74 | + |
| 75 | + { |
| 76 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}); |
| 77 | + assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}, Elem<11>{})); |
| 78 | + } |
| 79 | + { |
| 80 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}); |
| 81 | + assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}, Elem<11>{})); |
| 82 | + } |
| 83 | + { |
| 84 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}, Elem<3>{}); |
| 85 | + assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}, Elem<11>{})); |
| 86 | + } |
| 87 | + { |
| 88 | + auto f = std::bind_front<MakeTuple{}>(Elem<1>{}, Elem<2>{}, Elem<3>{}); |
| 89 | + assert(f(Elem<10>{}, Elem<11>{}, Elem<12>{}) == |
| 90 | + std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}, Elem<11>{}, Elem<12>{})); |
| 91 | + } |
| 92 | + } |
| 93 | + |
| 94 | + { // Basic tests with fundamental types |
| 95 | + const int n = 2; |
| 96 | + const int m = 1; |
| 97 | + int o = 0; |
| 98 | + |
| 99 | + auto add = [](int x, int y) { return x + y; }; |
| 100 | + auto add6 = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; }; |
| 101 | + auto increment = [](int& x) { return ++x; }; |
| 102 | + |
| 103 | + auto a = std::bind_front<add>(m, n); |
| 104 | + assert(a() == 3); |
| 105 | + |
| 106 | + auto b = std::bind_front<add6>(m, n, m, m, m, m); |
| 107 | + assert(b() == 7); |
| 108 | + |
| 109 | + auto c = std::bind_front<add6>(n, m); |
| 110 | + assert(c(1, 1, 1, 1) == 7); |
| 111 | + |
| 112 | + auto f = std::bind_front<add>(n); |
| 113 | + assert(f(3) == 5); |
| 114 | + |
| 115 | + auto g = std::bind_front<add>(n, 1); |
| 116 | + assert(g() == 3); |
| 117 | + |
| 118 | + auto h = std::bind_front<add6>(1, 1, 1); |
| 119 | + assert(h(2, 2, 2) == 9); |
| 120 | + |
| 121 | + auto i = std::bind_front<increment>(); |
| 122 | + assert(i(o) == 1); |
| 123 | + assert(o == 1); |
| 124 | + |
| 125 | + auto j = std::bind_front<increment>(std::ref(o)); |
| 126 | + assert(j() == 2); |
| 127 | + assert(o == 2); |
| 128 | + } |
| 129 | +} |
| 130 | + |
| 131 | +constexpr void test_edge_cases() { |
| 132 | + { // Make sure we don't treat std::reference_wrapper specially. |
| 133 | + auto sub = [](std::reference_wrapper<int> a, std::reference_wrapper<int> b) { return a.get() - b.get(); }; |
| 134 | + |
| 135 | + int i = 1; |
| 136 | + int j = 2; |
| 137 | + auto f = std::bind_front<sub>(std::ref(i)); |
| 138 | + assert(f(std::ref(j)) == -1); |
| 139 | + } |
| 140 | + |
| 141 | + { // Make sure we can call a function that's a pointer to a member function. |
| 142 | + struct MemberFunction { |
| 143 | + constexpr int mul(int x, int y) { return x * y; } |
| 144 | + }; |
| 145 | + |
| 146 | + MemberFunction value; |
| 147 | + auto fn = std::bind_front<&MemberFunction::mul>(value, 2); |
| 148 | + assert(fn(3) == 6); |
| 149 | + } |
| 150 | + |
| 151 | + { // Make sure we can call a function that's a pointer to a member object. |
| 152 | + struct MemberObject { |
| 153 | + int obj; |
| 154 | + }; |
| 155 | + |
| 156 | + MemberObject value{.obj = 3}; |
| 157 | + auto fn1 = std::bind_front<&MemberObject::obj>(); |
| 158 | + assert(fn1(value) == 3); |
| 159 | + auto fn2 = std::bind_front<&MemberObject::obj>(value); |
| 160 | + assert(fn2() == 3); |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +constexpr void test_passing_arguments() { |
| 165 | + { // Make sure that we copy the bound arguments into the unspecified-type. |
| 166 | + int n = 2; |
| 167 | + auto f = std::bind_front<[](int x, int y) { return x + y; }>(n, 1); |
| 168 | + n = 100; |
| 169 | + assert(f() == 3); |
| 170 | + } |
| 171 | + |
| 172 | + { // Make sure we pass the bound arguments to the function object |
| 173 | + // with the right value category. |
| 174 | + { |
| 175 | + auto was_copied = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::copy; }; |
| 176 | + CopyMoveInfo info; |
| 177 | + auto f = std::bind_front<was_copied>(info); |
| 178 | + assert(f()); |
| 179 | + } |
| 180 | + |
| 181 | + { |
| 182 | + auto was_moved = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::move; }; |
| 183 | + CopyMoveInfo info; |
| 184 | + auto f = std::bind_front<was_moved>(info); |
| 185 | + assert(std::move(f)()); |
| 186 | + } |
| 187 | + } |
| 188 | +} |
| 189 | + |
| 190 | +constexpr void test_perfect_forwarding_call_wrapper() { |
| 191 | + { // Make sure we call the correctly cv-ref qualified operator() |
| 192 | + // based on the value category of the bind_front<NTTP> unspecified-type. |
| 193 | + struct X { |
| 194 | + constexpr int operator()() & { return 1; } |
| 195 | + constexpr int operator()() const& { return 2; } |
| 196 | + constexpr int operator()() && { return 3; } |
| 197 | + constexpr int operator()() const&& { return 4; } |
| 198 | + }; |
| 199 | + |
| 200 | + auto f = std::bind_front<X{}>(); |
| 201 | + using F = decltype(f); |
| 202 | + assert(static_cast<F&>(f)() == 2); |
| 203 | + assert(static_cast<const F&>(f)() == 2); |
| 204 | + assert(static_cast<F&&>(f)() == 2); |
| 205 | + assert(static_cast<const F&&>(f)() == 2); |
| 206 | + } |
| 207 | + |
| 208 | + // Call to `bind_front<NTTP>` unspecified-type's operator() should always result in call to the const& overload of the underlying function object. |
| 209 | + { |
| 210 | + { // Make sure unspecified-type is still callable when we delete the & overload. |
| 211 | + struct X { |
| 212 | + int operator()() & = delete; |
| 213 | + int operator()() const&; |
| 214 | + int operator()() &&; |
| 215 | + int operator()() const&&; |
| 216 | + }; |
| 217 | + |
| 218 | + using F = decltype(std::bind_front<X{}>()); |
| 219 | + static_assert(std::invocable<F&>); |
| 220 | + static_assert(std::invocable<const F&>); |
| 221 | + static_assert(std::invocable<F>); |
| 222 | + static_assert(std::invocable<const F>); |
| 223 | + } |
| 224 | + |
| 225 | + { // Make sure unspecified-type is not callable when we delete the const& overload. |
| 226 | + struct X { |
| 227 | + int operator()() &; |
| 228 | + int operator()() const& = delete; |
| 229 | + int operator()() &&; |
| 230 | + int operator()() const&&; |
| 231 | + }; |
| 232 | + |
| 233 | + using F = decltype(std::bind_front<X{}>()); |
| 234 | + static_assert(!std::invocable<F&>); |
| 235 | + static_assert(!std::invocable<const F&>); |
| 236 | + static_assert(!std::invocable<F>); |
| 237 | + static_assert(!std::invocable<const F>); |
| 238 | + } |
| 239 | + |
| 240 | + { // Make sure unspecified-type is still callable when we delete the && overload. |
| 241 | + struct X { |
| 242 | + int operator()() &; |
| 243 | + int operator()() const&; |
| 244 | + int operator()() && = delete; |
| 245 | + int operator()() const&&; |
| 246 | + }; |
| 247 | + |
| 248 | + using F = decltype(std::bind_front<X{}>()); |
| 249 | + static_assert(std::invocable<F&>); |
| 250 | + static_assert(std::invocable<const F&>); |
| 251 | + static_assert(std::invocable<F>); |
| 252 | + static_assert(std::invocable<const F>); |
| 253 | + } |
| 254 | + |
| 255 | + { // Make sure unspecified-type is still callable when we delete the const&& overload. |
| 256 | + struct X { |
| 257 | + int operator()() &; |
| 258 | + int operator()() const&; |
| 259 | + int operator()() &&; |
| 260 | + int operator()() const&& = delete; |
| 261 | + }; |
| 262 | + |
| 263 | + using F = decltype(std::bind_front<X{}>()); |
| 264 | + static_assert(std::invocable<F&>); |
| 265 | + static_assert(std::invocable<const F&>); |
| 266 | + static_assert(std::invocable<F>); |
| 267 | + static_assert(std::invocable<const F>); |
| 268 | + } |
| 269 | + } |
| 270 | + |
| 271 | + { // Test perfect forwarding |
| 272 | + auto f = [](int& val) { |
| 273 | + val = 5; |
| 274 | + return 10; |
| 275 | + }; |
| 276 | + |
| 277 | + auto bf = std::bind_front<f>(); |
| 278 | + int val = 0; |
| 279 | + assert(bf(val) == 10); |
| 280 | + assert(val == 5); |
| 281 | + |
| 282 | + using BF = decltype(bf); |
| 283 | + static_assert(std::invocable<BF, int&>); |
| 284 | + static_assert(!std::invocable<BF, int>); |
| 285 | + } |
| 286 | +} |
| 287 | + |
| 288 | +constexpr void test_return_type() { |
| 289 | + { // Test constructors and assignment operators |
| 290 | + struct LeftShift { |
| 291 | + constexpr unsigned int operator()(unsigned int x, unsigned int y) const { return x << y; } |
| 292 | + }; |
| 293 | + |
| 294 | + auto power_of_2 = std::bind_front<LeftShift{}>(1); |
| 295 | + assert(power_of_2(5) == 32U); |
| 296 | + assert(power_of_2(4) == 16U); |
| 297 | + |
| 298 | + auto moved = std::move(power_of_2); |
| 299 | + assert(moved(6) == 64); |
| 300 | + assert(moved(7) == 128); |
| 301 | + |
| 302 | + auto copied = power_of_2; |
| 303 | + assert(copied(3) == 8); |
| 304 | + assert(copied(2) == 4); |
| 305 | + |
| 306 | + moved = std::move(copied); |
| 307 | + assert(copied(1) == 2); |
| 308 | + assert(copied(0) == 1); |
| 309 | + |
| 310 | + copied = moved; |
| 311 | + assert(copied(8) == 256); |
| 312 | + assert(copied(9) == 512); |
| 313 | + } |
| 314 | + |
| 315 | + { // Make sure `bind_front<NTTP>` unspecified-type's operator() is SFINAE-friendly. |
| 316 | + using F = decltype(std::bind_front<[](int x, int y) { return x / y; }>(1)); |
| 317 | + static_assert(!std::is_invocable<F>::value); |
| 318 | + static_assert(std::is_invocable<F, int>::value); |
| 319 | + static_assert(!std::is_invocable<F, void*>::value); |
| 320 | + static_assert(!std::is_invocable<F, int, int>::value); |
| 321 | + } |
| 322 | + |
| 323 | + { // Test noexceptness |
| 324 | + auto always_noexcept = std::bind_front<MaybeNoexceptFn<true>{}>(); |
| 325 | + static_assert(noexcept(always_noexcept())); |
| 326 | + |
| 327 | + auto never_noexcept = std::bind_front<MaybeNoexceptFn<false>{}>(); |
| 328 | + static_assert(!noexcept(never_noexcept())); |
| 329 | + } |
| 330 | + |
| 331 | + { // Test calling volatile wrapper |
| 332 | + using Fn = decltype(std::bind_front<std::integral_constant<int, 0>{}>()); |
| 333 | + static_assert(!std::invocable<volatile Fn&>); |
| 334 | + static_assert(!std::invocable<const volatile Fn&>); |
| 335 | + static_assert(!std::invocable<volatile Fn>); |
| 336 | + static_assert(!std::invocable<const volatile Fn>); |
| 337 | + } |
| 338 | +} |
| 339 | + |
| 340 | +constexpr bool test() { |
| 341 | + test_basic_bindings(); |
| 342 | + test_edge_cases(); |
| 343 | + test_passing_arguments(); |
| 344 | + test_perfect_forwarding_call_wrapper(); |
| 345 | + test_return_type(); |
| 346 | + |
| 347 | + return true; |
| 348 | +} |
| 349 | + |
| 350 | +int main(int, char**) { |
| 351 | + test(); |
| 352 | + static_assert((test(), true)); |
| 353 | + |
| 354 | + return 0; |
| 355 | +} |
0 commit comments