You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[Clang][Sema] Diagnose use of template keyword after declarative nested-name-specifiers (#78595)
According to [temp.names] p5:
> The keyword template shall not appear immediately after a declarative nested-name-specifier.
[expr.prim.id.qual] p2 defines a declarative nested-name-specifier as follows:
> A nested-name-specifier is declarative if it is part of
> - a class-head-name,
> - an enum-head-name,
> - a qualified-id that is the id-expression of a declarator-id, or
> - a declarative nested-name-specifier.
Note: I believe this definition is defective as it doesn't include _nested-name-specifiers_ appearing in _elaborated-type-specifiers_ that declare partial/explicit specializations and explicit instantiations. See my post to the core reflector. Minus a few bugs that are addressed by this PR, this is how we implement it.
This means that declarations like:
```
template<typename>
struct A
{
template<typename>
struct B
{
void f();
};
};
template<typename T>
template<typename U>
void A<T>::template B<U>::f() { } // error: 'template' cannot be used after a declarative nested name specifier
```
are ill-formed. This PR add diagnostics for such declarations. The name of the diagnostic group is `template-in-declaration-name`.
Regarding the aforementioned "few bugs that are addressed by this PR" in order to correctly implement this:
- `CheckClassTemplate` did not call `diagnoseQualifiedDeclaration` when the semantic context was dependent. This allowed for constructs like:
```
struct A
{
template<typename T>
struct B
{
template<typename U>
struct C;
};
};
template<typename T>
template<typename U>
struct decltype(A())::B<T>::C { };
```
- `ActOnClassTemplateSpecialization` did not call `diagnoseQualifiedDeclaration` at all, allowing for qualified partial/explicit specializations at class scope and other related nonsense
- `TreeTransform::TransformNestedNameSpecifierLoc` would rebuild a `NestedNameSpecifier::TypeSpecWithTemplate` as a `NestedNameSpecifier::TypeSpec`
- `TemplateSpecializationTypeLoc::initializeLocal` would set the `template` keyword `SourceLocation` to the provided `Loc` parameter, which would result in a `TemplateSpecializationTypeLoc` obtained via `ASTContext::getTrivialTypeSourceInfo` being displayed as always having a `template` prefix (since the presence of the keyword is not stored anywhere else).
0 commit comments